精英家教网 > 高中数学 > 题目详情

【题目】已知.

(Ⅰ)当时,求的单调区间;

(Ⅱ)设的极小值点,求的最大值.

【答案】(Ⅰ)上单调递减,在上单调递增;(Ⅱ)

【解析】

(Ⅰ)当时,对函数求导,再对导函数进行求导,判断导函数的单调性,最后利用导函数的单调性进行判断的正负性,最后确定的单调性;

(Ⅱ)对函数求导,再对导函数进行求导,判断导函数的单调性,根据极值的定义,结合构造新函数,对新函数进行求导,结合新函数的单调性进行求解即可.

(Ⅰ)当时,,显然

,∴上是增函数,

时,,当时,

上单调递减,在上单调递增;

(Ⅱ)由,设

,∴上单调递增,

∴存在极小值点满足,即

,则

时,单调递减,

时,单调递增,

所以当时,有最大值,即

所以的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面平面为正三角形,为线段的中点.

1)证明:平面平面

2)若与平面所成角的大小为60°,,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:)的离心率为,且椭圆C的中心O关于直线的对称点落在直线.

1)求椭圆C的方程;

2)设PMN是椭圆C上关于x轴对称的任意两点,连接交椭圆C于另一点E,求直线的斜率取值范围,并证明直线x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年新型冠状病毒疫情爆发,贵州省教育厅号召全体学生“停课不停学”.自日起,高三年级学生通过收看“阳光校园·空中黔课”进行线上网络学习.为了检测线上网络学习效果,某中学随机抽取名高三年级学生做“是否准时提交作业”的问卷调查,并组织了一场线上测试,调查发现有名学生每天准时提交作业,根据他们的线上测试成绩得频率分布直方图(如图所示);另外名学生偶尔没有准时提交作业,根据他们的线上测试成绩得茎叶图(如图所示,单位:分)

1)成绩不低于分为等,低于分为非等.完成以下列联表,并判断是否有以上的把握认为成绩取得等与每天准时提交作业有关?

准时提交作业与成绩等次列联表

单位:人

A

A

合计

每天准时提交作业

偶尔没有准时提交作业

合计

2)成绩低于分为不合格,从这名学生里成绩不合格的学生中再抽取人,其中每天准时提交作业的学生人数为,求的分布列与数学期望.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,点的极坐标是,曲线的极坐标方程为.以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,斜率为的直线经过点.

1)若时,写出直线和曲线的直角坐标方程;

2)若直线和曲线相交于不同的两点,求线段的中点的在直角坐标系中的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读下列材料,回答所提问题:设函数,①的定义域为,其图像是一条连续不断的曲线;②是偶函数;③上不是单调函数;④恰有个零点,写出符合上述①②④条件的一个函数的解析式是______;写出符合上述所有条件的一个函数的解析式是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】BMI指数(身体质量指数,英文为BodyMassIndex,简称BMI)是衡量人体胖瘦程度的一个标准,BMI=体重(kg/身高(m)的平方.根据中国肥胖问题工作组标准,当BMI28时为肥胖.某地区随机调查了120035岁以上成人的身体健康状况,其中有200名高血压患者,被调查者的频率分布直方图如下:

1)求被调查者中肥胖人群的BMI平均值

2)填写下面列联表,并判断是否有99.9%的把握认为35岁以上成人患高血压与肥胖有关.

0.050

0.010

0.001

k

3.841

6.635

10.828

肥胖

不肥胖

合计

高血压

非高血压

合计

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体ABCD中,ABCBCD均是边长为1的等边三角形,已知四面体ABCD的四个顶点都在同一球面上,且AD是该球的直径,则四面体ABCD的体积为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市先后采用甲、乙两种方案治理空气污染各一年,各自随机抽取一年(365天)内100天的空气质量指数API的检测数据进行分析,若空气质量指数值在[0300]内为合格,否则为不合格.1是甲方案检测数据样本的频数分布表,如图是乙方案检测数据样本的频率分布直方图.

1

API

[050]

50100]

100150]

150200]

200250]

250300]

大于300

天数

9

13

19

30

14

11

4

1)将频率视为概率,求乙方案样本的频率分布直方图中的值,以及乙方案样本的空气质量不合格天数;

2)求乙方案样木的中位数;

3)填写下面2×2列联表(如表2),并根据列联表判断是否有90%的把握认为该城市的空气质量指数值与两种方案的选择有关.

2

甲方案

乙方案

合计

合格天数

_______

_______

_______

不合格天数

_______

_______

_______

合计

_______

_______

_______

附:

0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

同步练习册答案