精英家教网 > 高中数学 > 题目详情
如图,AB为圆柱的底面直径,过母线的截面ACEF是边长为1的正方形,
(Ⅰ)求证:平面ABE⊥平面BCF;
(Ⅱ)若平面BEF与平面BCF所成的二面角为60°,求圆柱的底面直径AB的长.
考点:与二面角有关的立体几何综合题,平面与平面垂直的判定
专题:空间位置关系与距离
分析:(Ⅰ)过圆柱母线的截面ACEF是正方形,从而截面ACEF⊥平面ABC,AE⊥CF,又AC⊥BC,从而BC⊥截面ACEF,进而BC⊥AE,由此能证明平面ABE⊥平面BCF.
(Ⅱ)平面BEF与平面BCF所成的二面角为60°,设AE∩CF=M,由(Ⅰ)知AE⊥平面BCF,过E作EH⊥BF于H,连接MH,则MH⊥BF,由此能坟出直径AB长.
解答: (Ⅰ)证明:∵过圆柱母线的截面ACEF是正方形,
∴截面ACEF⊥平面ABC,AE⊥CF,
又AB为圆柱底面直径,∴AC⊥BC,
∴BC⊥截面ACEF,∴BC⊥AE,
又∵CF∩BC=C,
∴AE⊥平面BCF,又AE?平面ABE,
∴平面ABE⊥平面BCF.
(Ⅱ)解:平面BEF与平面BCF所成的二面角为60°,
设AE∩CF=M,由(Ⅰ)知AE⊥平面BCF,
过E作EH⊥BF于H,
连接MH,则MH⊥BF,∴∠EHM=60°,
设BC=t,则BE=
t2+1
,EH=
t2+1
t2+2

在Rt△EMH中,
依题sin∠EHM=
2
2
t2+1
t2+2
=
3
2

t2+1
t2+2
=
2
3

解得t=1,
∴直径AB长为
2
点评:本题考查平面与平面垂直的证明,考查直径长的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知函数f(x)=lnx-
a
x
.若函数f(x)在[1,e]上的最小值为
3
2
,求实数a的值.
(2)求证:当1<x<2时,不等式
1
lnx
-
1
x-1
1
2
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,为测得河对岸某建筑物AB的高,先在河岸上选一点C,使C在建筑物底端B的正东方向上,测得点A的仰角为d,再由点C沿东偏北β(β<
π
2
)角方向走d米到达位置D,测得∠BDC=γ.
(Ⅰ)若β=75°,求sin∠BCD的值;
(Ⅱ)求此建筑物的高度(用字母表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=2sin(
π
3
-2x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知PA垂直于矩形ABCD所在平面,M,N分别是AB,PC的中点.
(1)求证:CD⊥平面PAD; 
(2)求证:MN∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

正△ABC的边长为2,CD是AB边上的高,E,F分别是AC和BC的中点(如图(1)).现将△ABC沿CD翻折成直二面角A-DC-B,如图(2).在图(2)中:
(Ⅰ)求证:AB∥平面DEF
(Ⅱ)求多面体D-ABFE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

将正整数按如图的规律排列,把第一行数1,2,3,10,17,…记为数列{an}(n∈N+),第一数列1,4,9,16,25,…记为数列{bn}(n∈N+
(1)写出数列{an},{bn}的通项公式;
(2)若数列{an},{bn}的前n项和分别为Sn,Tn,用数学归纳法证明:3(Tn+Tn)=2n3+4n(n∈N+);
(3)当n≥3时,证明:
5
4
1
b1
+
1
b2
+
1
b3
+…+
1
bn
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+8x的图象上一点P(1,f(1)),过P作平行于x轴的直线l1,直线l2:x=2,求如图所示的阴影部分的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“?x∈R*,x>
1
x
”,命题p的否定为命题q,则q是“
 
”.

查看答案和解析>>

同步练习册答案