精英家教网 > 高中数学 > 题目详情
20.求证:${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+…+(n+1)${C}_{n}^{n}$=2n+n•2n-1

分析 利用组合数阶乘形式的公式得到kCnk=nCn-1k-1,将等式变成(Cn0+Cn1+Cn2+Cn3+…+Cnn)+n(Cn-10+Cn-11+Cn-12+Cn-13+…+Cn-1n-1),再利用二项式系数的和即可求解

解答 解:∵kCnk=nCn-1k-1
∴${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+…+(n+1)${C}_{n}^{n}$=(Cn0+Cn1+Cn2+Cn3+…+Cnn)+n(Cn-10+Cn-11+Cn-12+Cn-13+…+Cn-1n-1
=2n+n•2n-1
即 ${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+…+(n+1)${C}_{n}^{n}$=2n+n•2n-1 成立.

点评 本题考查组合数的公式性质:kCkn=nCk-1n-1;考查二项式系数和公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知数列{an}和{bn}中,数列{an}的前n项和为Sn,若点(n,Sn)在函数y=-x2的图象上,点(n,bn)在函数y=2x的图象上
(1)求数列{an}的通项公式
(2)求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\overrightarrow{AB}$=(-1,3),$\overrightarrow{BC}$=(3,m),$\overrightarrow{CD}$=(1,n),且$\overrightarrow{AD}$∥$\overrightarrow{BC}$.
(1)求实数n的值;
(2)若$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解方程:$\frac{a}{\sqrt{4+{a}^{2}}}$=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$),其图象的一个对称中心为($\frac{π}{12}$,0),且相邻对称轴间的距离为$\frac{π}{2}$.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+f(x+$\frac{π}{3}$)(x∈[0,π]),求g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,AB=3,BC=$\sqrt{13}$,AC=4,则AC边上的高等于(  )
A.$\frac{3}{2}$$\sqrt{3}$B.$\frac{3}{2}$$\sqrt{2}$C.3D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=ax3-bx+3满足f(1)=5,则f(-1)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知动点P(x,y)及两定点A(-3,0)和B(3,0),若$\frac{|PA|}{|PB|}$=2,(|PA|、|PB|分别表示点P与点A、B的距离)
(1)求动点P的轨迹Γ方程.
(2)动点Q在直线y-x-1=0上,且QM、QN是轨迹Γ的两条切线,M、N是切点,C是轨迹Γ中心,求四边形OMCN面积的最小值及此时直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.双曲线$\frac{y^2}{12}-\frac{x^2}{4}=1$的顶点到渐近线的距离为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案