精英家教网 > 高中数学 > 题目详情
10.已知数列{an}和{bn}中,数列{an}的前n项和为Sn,若点(n,Sn)在函数y=-x2的图象上,点(n,bn)在函数y=2x的图象上
(1)求数列{an}的通项公式
(2)求数列{anbn}的前n项和Tn

分析 (1)由点(n,Sn)在函数y=-x2的图象上,可得${S}_{n}=-{n}^{2}$.利用递推式可得当n≥2时,an=Sn-Sn-1.当n=1时,a1=S1,即可得出.
(2)由点(n,bn)在函数y=2x的图象上,可得bn=2n.anbn=(1-2n)•2n.利用“错位相减法”、等比数列的前n项和公式即可得出.

解答 解:(1)∵点(n,Sn)在函数y=-x2的图象上,∴${S}_{n}=-{n}^{2}$.
∴当n≥2时,an=Sn-Sn-1=-n2+(n-1)2=1-2n.当n=1时,a1=S1=-1,符合上式.
∴an=-2n+1.
(2)∵点(n,bn)在函数y=2x的图象上,∴bn=2n
∴anbn=(1-2n)•2n
∴Tn=-1×21-3×22-5×23-…-(2n-1)-2n
∴2Tn=-1×22-3×23-…-(2n-3)×2n-(2n-1)×2n+1
∴Tn=2+2×22+2×23+…+2×2n+(1-2n)×2n+1=(3-2n)×2n+1-6,

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”、递推式的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xoy中,锐角α的顶点为坐标原点,始边在x轴的非负半轴上,角α的终边与单位圆交于点P($\frac{2\sqrt{5}}{5}$,y).
(Ⅰ)求sinα和cosα的值;          
(Ⅱ)求$\frac{sinα+cosα}{sinα-cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.变量x,y满足约束条件:$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{kx+y-2k≤0}\end{array}\right.$,当k≥2时,对应的可行域面积为s,则z=$\frac{ks}{k+2}$的范围是[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从集合A={1,3,5,7,9}和集合B={2,4,6,8}中各取一个数,那么这两个数之和除3余1的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,A=60°,b=1,c=2,求$\frac{a+b+c}{sinA+sinB+sinC}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某几何体三视图如图(单位;cm),则该几何体的体积是(  )
A.1500cm3B.1025cm3C.625cm3D.1200cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在复平面内,复数$\frac{i}{1+i}$+(1+$\sqrt{3}$i)2的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图是某市有关部门根据该市干部的月收入情况,作抽样调查后画出的样本频率分布直方图.已知图中第一组的频数为4000,请根据该图提供的信息 (图中每组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)),回答:
(1)若按月收入用分层抽样方法抽出100人,则月收入在[1500,2000)的这段应抽20人
(2)样本数据的中位数估计为1750(元).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求证:${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+…+(n+1)${C}_{n}^{n}$=2n+n•2n-1

查看答案和解析>>

同步练习册答案