精英家教网 > 高中数学 > 题目详情
6.在平面直角坐标系中,设向量$\overrightarrow{m}$=($\sqrt{3}$cosA,sinA),$\overrightarrow{n}$=(cosB,-$\sqrt{3}$sinB),其中A,B为△ABC的两个内角.
(1)若$\overrightarrow{m}⊥\overrightarrow{n}$,求证:C为直角;
(2)若$\overrightarrow{m}∥\overrightarrow{n}$,求证:B为锐角.

分析 (1)运用向量垂直的条件:数量积为0,结合两角和的余弦公式和诱导公式即可得证;
(2)运用两向量共线的条件和两角和的正弦公式和诱导公式即可得证.

解答 证明:(1)向量$\overrightarrow{m}$=($\sqrt{3}$cosA,sinA),$\overrightarrow{n}$=(cosB,-$\sqrt{3}$sinB),
若$\overrightarrow{m}⊥\overrightarrow{n}$,则$\overrightarrow{m}•\overrightarrow{n}$=0,
即$\sqrt{3}$cosAcosB-$\sqrt{3}$sinAsinB=0,
即有cos(A+B)=0,即cos(π-C)=0,
则cosC=0,即有C为直角.
(2)若$\overrightarrow{m}$∥$\overrightarrow{n}$,则sinAcosB=-3cosAsinB,
即sinAcosB+cosAsinB=-2cosAsinB,
sin(A+B)=-2cosAsinB,
即sinC=-2cosAsinB,
由sinB>0,sinC>0,则cosA<0,
由sinA>0,sinB>0,则cosB>0,
则有B为锐角.

点评 本题考查向量的垂直和共线的条件,主要考查三角函数的化简和两角和差公式的运用和诱导公式的运用,属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知△ABC中,内角A,B,C的对边a,b,c,若a2=b2+c2-bc,bc=4,△ABC的面积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(1-x),x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,则f(2014)=log32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和Sn满足Sn+($\frac{2}{n}$+1)an=2(n∈N*
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=2n•an,它的前n项和为Tn,求数列{$\frac{1}{{T}_{n}}$}的前n项和An
(3)在(2)的条件下,求数列{$\frac{{a}_{n}}{{b}_{n}}$}的前n项和Bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求解不等式:$\sqrt{1+lgx}$>1-lgx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一个多边形的直观图和三视图如图所示(其中EMF分别是PB,AD的中心)
(1)求证:EF⊥平面PBC;
(2)求三棱锥B-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(1-b)x2-2ax+b,当0≤a≤$\frac{1}{2}$,a≤b时,求证:f(x)≥0在x∈[-1,1]上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{lo{g}_{0.5}(4x-3)}$的定义域为A,函数g(x)=2m(-1≤x≤m)的值域为B.
(1)当m=1时,求A∩B;
(2)若A∪B=B,求实数m的取值范围.

查看答案和解析>>

同步练习册答案