【题目】是定义在上的奇函数,其图象如图所示,令,则下列关于函数的叙述正确的是()
A. 若,则函数的图象关于原点对称
B. 若,则方程有大于2的实根
C. 若,则方程有两个实根
D. 若,则方程有两个实根
【答案】B
【解析】
试题奇函数的图象关于原点对称;当a≠0时af(x)与f(x)有相同的奇偶性;f(x)+b的图象可由f(x)上下平移得到.充分利用以上知识点逐项分析即可解答解:①若a=-1,b=1,则函数g(x)不是奇函数,其图象不可能关于原点对称,所以选项A错误;②当a=-1时,-f(x)仍是奇函数,2仍是它的一个零点,但单调性与f(x)相反,若再加b,-2<b<0,则图象又向下平移-b个单位长度,所以g(x)=-f(x)+b=0有大于2的实根,所以选项B正确;③若a=1,b=2,则g(x)=f(x)+2,其图象由f(x)的图象向上平移2个单位长度,那么g(x)只有两个零点,所以g(x)=0只有两个实根,所以选项C错误;④若a=1,b=-3,则g(x)的图象由f(x)的图象向下平移3个单位长度,它只有1个零点,即g(x)=0只有一个实根,所以选项D错误.故选B
科目:高中数学 来源: 题型:
【题目】已知正方形的对角线与相交于点,将沿对角线折起,使得平面平面(如图),则下列命题中正确的是( )
A. 直线直线,且直线直线
B. 直线平面,且直线平面
C. 平面平面,且平面平面
D. 平面平面,且平面平面
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PD的中点,F为AC和BD的交点.
(1)证明:PB∥平面AEC;
(2)证明:平面PAC⊥平面PBD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图, 为坐标原点,双曲线和椭圆均过点,且以的两个顶点和的两个焦点为顶点的四边形是面积为2的正方形.
(1)求的方程;
(2)是否存在直线,使得与交于两点,与只有一个公共点,且?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知空间中三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设=,=.
(1)求与的夹角的余弦值; (2)若与k-2互相垂直,求实数k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经市场调查,某超市的一种小商品在过去近20天内的日销售量(件)与价格(元)均为时间t(天)的函数,且日销售量(件)近似函数g(t)=80-2t,价格(元)近似满足函数关系式为
f(t)=20-|t-10|.
(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;
(2)求该种商品的日销售额y的最大值与最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com