精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD的底面ABCD是直角梯形,AD∥BC,AB⊥BC,平面PAB⊥底面ABCD,PA=AD=AB=1,BC=2.
(Ⅰ)证明:平面PBC⊥平面PDC;
(Ⅱ)若PA⊥AB,求二面角B-PD-C的余弦值.
考点:用空间向量求平面间的夹角,平面与平面垂直的判定
专题:空间角
分析:(Ⅰ)根据面面垂直的判定定理即可证明平面PBC⊥平面PDC;
(Ⅱ)建立空间直角坐标系,求出平面的法向量,利用向量法即可求出二面角B-PD-C的余弦值.
解答: 解:(Ⅰ)取PC,BC的中点E,F,连接DF,DE,EF,
由已知可得PD=CD,
则DE⊥PC,
∵平面PAB⊥底面ABCD,AB⊥BC,
∴BC⊥平面PAB,
∴PB⊥BC,
又E,F是PC,BC的中点,
∴EF∥PB.DF∥AB.
∴BC⊥平面DEF,∴BC⊥DE,
∵BC∩PC=C,
∴DC⊥平面PBC,
又DE?平面PDC,
∴平面PBC⊥平面PDC;
(Ⅱ)建立如图所表示的空间直角坐标系A-xyz,则B(1,0,0),P(0,0,1),D(0,1,0),C(1,2,0),
BP
=(-1,0,1)
PD
=(0,1,-1)
DC
=(1,1,0)

设平面BPD,平面CPD的法向量分别为
m
=(x1,y1,z1),
n
=(x2,y2,z2),
-x1+z1=0
y1-z1=0
,令x1=1,得
m
=(1,1,1),
y2-z2=0
x2+z2=0
,令x2=1,得
n
=(1,-1,-1),
观察可得二面角B-PD-C的平面角为锐角,设为θ,
则cosθ=|cos<
m
n
>|=
1
3
点评:本题主要考查面面垂直的判定,以及二面角的求法,建立坐标系利用向量法是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆x2+y2=1在矩阵M=
a0
0b
(a>0,b>0)对应的变换作用下得到椭圆x2+4y2=1,求矩阵M的特征值和特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
m-2x
2x+1
是奇函数.
(Ⅰ)求m的值;
(Ⅱ)用定义证明f(x)在R上为减函数;
(Ⅲ)若对于任意的实数t,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M在椭圆
x2
a2
+
y2
b2
=1(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点F.若圆M与y轴相交于A,B两点,且△ABM是边长为2的正三角形.
(1)求椭圆的方程和圆M的方程.
(2)若点D的坐标为(0,3),M、N是椭圆上的两个动点,且
DM
DN
,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,?ABCD中,
AB
=
a
AD
=
b

(1)当
a
b
满足什么条件时,表示
a
+
b
a
-
b
的有向线段所在的直线互相垂直?
(2)当
a
b
满足什么条件时,|
a
+
b
|=|
a
-
b
|.
(3)
a
+
b
a
-
b
有可能为相等向量吗?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC内接于单位圆,且(1+tanA)(1+tanB)=2,
(1)求角C
(2)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-x
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若不等式af(x)≥x-
1
2
x2
在x∈(0,+∞)内恒成立,求实数a的取值范围;
(Ⅲ)n∈N*,求证:
1
ln2
+
1
ln3
+…+
1
ln(n+1)
n
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

直四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,且∠BAD=60°,AA1=AB1,E为BB1延长线上的一点,D1E⊥面D1AC.
(Ⅰ)求二面角E-AC-D1的大小;
(Ⅱ)在D1E上是否存在一点P,使A1P∥面EAC?若存在,求D1P:PE的值,不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>
5
4
,求函数y=4x-2+
1
4x-5
的最小值是
 

查看答案和解析>>

同步练习册答案