精英家教网 > 高中数学 > 题目详情
5.已知函数y=f(x)的图象在点(2,f(2))处的切线方程是x-2y+1=0,则f(2)+f'(2)的值是(  )
A.2B.1C.-$\frac{3}{2}$D.3

分析 由已知切线的方程,结合导数的几何意义,可得f(2),f′(2),即可得到所求和.

解答 解:函数y=f(x)的图象在点(2,f(2))处的切线方程是x-2y+1=0,
可得f(2)=$\frac{1}{2}$×3=$\frac{3}{2}$;f′(2)=$\frac{1}{2}$,
即有f(2)+f'(2)=$\frac{3}{2}$+$\frac{1}{2}$=2,
故选:A.

点评 本题考查导数的运用:求切线的斜率,考查导数的几何意义,正确运用切线的方程是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和Sn满足an=1-2Sn
(1)求证:数列{an}为等比数列;
(2)设函数$f(x)={log_{\frac{1}{3}}}x,{b_n}=f({a_1})+f({a_2})+…+f({a_n})$,求Tn=$\frac{1}{b_1}+\frac{1}{b_2}+\frac{1}{b_3}+…+\frac{1}{b_n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,D、E分别是AB,AC的中点,M是直线DE上的动点,若△ABC的面积为1,则$\overrightarrow{MB}$•$\overrightarrow{MC}$+$\overrightarrow{BC}$2的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=2.5cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,M、N两点之间的距离为13,且f(3)=0,若将函数f(x)的图象向右平移t(t>0)个单位长度后所得函数的图象关于坐标原点对称,则t的最小值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知椭圆M:(x-2)2+y2=4,则过点(1,1)的直线中被圆M截得的最短弦长为2$\sqrt{2}$.类比上述方法:设球O是棱长为3的正方体ABCD-A1B1C1D1的外接球,过AC1的一个三等分点作球O的截面,则最小截面的面积为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD底面为正方形,已知PD⊥平面ABCD,PD=AD,点M为线段PA上任意一点(不含端点),点N在线段BD上,且PM=DN.
(1)求证:直线MN∥平面PCD;
(2)若PD=2,M为线段PA中点,求三棱锥P-MNB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{3}$x3-x2+x.
(1)求函数f(x)在[-1,2]上的最大值和最小值;
(2)若函数g(x)=f(x)-4x,x∈[-3,2],求g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知偶函数f(x)在区间(-∞,0]内单调递减,a=f(log23),b=f(log45),$c=f({2^{\frac{1}{2}}})$,则a,b,c满足(  )
A.a<b<cB.c<a<bC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.给出如下四个命题:
①已知m,n表示两条不同的直线,α,β表示两个不同的平面,并且m⊥α,n?β,则“α⊥β”是“m∥n”的必要不充分条件;
②对于?x∈(0,+∞),log2x<log3x成立;
③“若am2<bm2,则a<b”的逆命题为真命题;
④把函数$y=3sin(2x+\frac{π}{3})$的图象向右平移$\frac{π}{6}$个单位,可得到y=3sin2x的图象.
其中所有正确命题的序号是①④.

查看答案和解析>>

同步练习册答案