精英家教网 > 高中数学 > 题目详情
15.对于定义在R上的函数,下列命题:
(1)若f(-2)=f(2),则f(x)为偶函数;
(2)若f(-2)≠f(2),则f(x)不是偶函数;
(3)若f(-2)=f(2),则f(x)一定不是奇函数.
其中正确的命题是②(把所有正确命题的序号都填上).

分析 对于①,利用偶函数的定义即可判断;对于②的逆否命题为真,原命题为真;对于③,列举反例即可.

解答 解:根据偶函数的定义,对于定义域内的任意一个值都满足:f(-x)=f(x)
对于①,仅满足f(-2)=f(2),不表明对于R上的其它值也成立,故①错误;
对于②的逆否命题为:若f(x)是偶函数,则f(-2)=f(2)为真命题,故原命题为真;
对于③,函数f(x)=0(x∈R)是奇函数,且满足f(-2)=f(2),故③错误.
故答案为:②.

点评 本题以函数为载体,考查偶函数的定义,考查命题的真假判断,关键是正确理解偶函数的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知数列{an}的通项公式为an=2n(3n-13),则数列{an}的前n项和Sn取最小值时,n的值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.己知平面向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2,y),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|的最小值为(  )
A.1B.$\sqrt{5}$C.$\sqrt{7}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法中,正确的是(  )
①y+1=k(x-2)表示经过点(2,-1)的所有直线;
②y+1=k(x-2)表示经过点(2,-1)的无数条直线;
③直线y+1=k(x-2)恒过定点;
④直线y+1=k(x-2)不可能垂直于x轴.
A.①②③B.②③④C.①③④D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,一次函数y=ax+b的图象与反比例函数y=$\frac{k}{x}$的图象交于A、B两点,与x轴交于点C,与y轴交于点D,已知OA=$\sqrt{10}$,点B的坐标为(m,-2),tan∠AOC=$\frac{1}{3}$.
(1)求反比例函数、一次函数的解析式;
(2)求三角形ABO的面积;
(3)在y轴上存在一点P,使△PDC与△CDO相似,求P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设数集M={x|m≤x≤m+$\frac{3}{4}$},N={x|n-$\frac{1}{3}$≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{12}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3-9x+5.
(1)求曲线y=f(x)在点(2,f(2))处的切线与坐标轴围成三角形的面积;
(2)求f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若圆的一般方程为x2+y2+6x+6=0,则圆的圆心和半径长分别是(  )
A.(1,1),$\sqrt{3}$B.(1,2),$\sqrt{3}$C.(3,0),3D.(-3,0),$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题p:?$x∈[\frac{1}{2},1],\frac{1}{x}$-a≥0,命题q:?x∈R,x2+2ax+2-a=0,若p∧q是真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案