精英家教网 > 高中数学 > 题目详情
8.已知a>2,用放缩法证明不等式:loga(a-1)•loga(a+1)<1.

分析 由a>2可得,loga(a-1)>0,loga(a+1)>0,运用均值不等式可得loga(a-1)•loga(a+1)<
($\frac{lo{g}_{a}(a-1)+lo{g}_{a}(a+1)}{2}$)2,再由对数的运算性质和单调性,即可得证.

解答 证明:由a>2,可得loga(a-1)>0,loga(a+1)>0,
即有loga(a-1)•loga(a+1)<($\frac{lo{g}_{a}(a-1)+lo{g}_{a}(a+1)}{2}$)2
=($\frac{lo{g}_{a}({a}^{2}-1)}{2}$)2<($\frac{lo{g}_{a}{a}^{2}}{2}$)2=1.
即有loga(a-1)•loga(a+1)<1.

点评 本题考查不等式的证明,注意运用均值不等式和对数函数的单调性,以及不等式的放缩法,考查运算和推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\frac{ax+b}{{1+{x^2}}}$是定义在(-1,1)上的奇函数,且f($\frac{1}{2}$)=$\frac{2}{5}$,则不等式f(t-1)+f(t)<0的解集为(  )
A.(0,1)B.(0,$\frac{1}{2}$]C.(0,$\frac{1}{2}$)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.定义运算$|{\begin{array}{l}a&b\\ c&d\end{array}}$|=ad-bc,如果(x+y)+(x+3)i=$|{\begin{array}{l}{3x+2y}&i\\{-y}&1\end{array}}|$,x,y∈R,求z=y-xi.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线l:x-y=1与圆Γ:x2+y2-2x+2y-1=0相交于A,C两点,点B,D分别在圆Γ上运动,且位于直线l的两侧,则四边形ABCD面积的最大值为(  )
A.$\sqrt{30}$B.$2\sqrt{30}$C.$\sqrt{51}$D.$2\sqrt{51}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若存在x∈R,使得a3x-4≥${2^{{x^2}-x}}$(a>0且a≠1)成立,则实数a的取值范围是a≥2或0<a$≤\root{9}{2}$且a≠1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l:mx-y=1,若直线l与直线x+m(m-1)y=2垂直,则m的值为0或2,动直线l被圆C:x2-2x+y2-8=0截得的最短弦长为2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={1,2,3,4},B={x|x=2n-1,n∈A},则A∩B=(  )
A.{1,3}B.{2,4}C.{1,4}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给出下列命题:
①存在实数α,使sinα•cosα=1;
②若函数y=$\frac{1}{2}$sin(2x-φ+$\frac{π}{4}}$)为偶函数,则φ=-$\frac{π}{4}$-kπ,k∈Z;
③x=$\frac{π}{8}$是函数y=sin(2x+$\frac{5π}{4}}$)的一条对称轴方程;
④若α,β是第一象限角,且α>β,则sinα>sinβ;
⑤过点P(-1,6)且与圆(x+3)2+(y-2)2=4相切的直线方程是3x-4y-27=0;
⑥过原点O作圆x2+y2-8x=0的弦OA,则弦OA的中点N的轨迹方程为x2+y2-4x=0,
其中正确的命题是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a、b、c为正数,求证:$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{c}$+$\frac{{c}^{2}}{a}$≥$\sqrt{ab}$+$\sqrt{bc}$+$\sqrt{ac}$.

查看答案和解析>>

同步练习册答案