精英家教网 > 高中数学 > 题目详情
设数列{an}满足a1=1,an3+an2(1-an+1)+1=an+1(n∈N+);
(1)证明:an+1>an
(2)若bn=(1-
an2
an+12
1
an
,证明:0<
n
k-1
bk<2.
考点:数列递推式
专题:等差数列与等比数列
分析:(1)由an3+an2(1-an+1)+1=an+1(n∈N+),化为an+1=
a
3
n
+
a
2
n
+1
a
2
n
+1
,作差比较即可证明.
(2)由a1=1>0,an+1>an,可得?n∈N*,an>0,1-
a
2
n
a
2
n+1
>0,可得bn>0,0<
n
k-1
bk.另一方面:bn=
(an+1+an)(an-1-an)
an
a
2
n+1
2an+1(an+1-an)
an
a
2
n+1
=2(
1
an
-
1
an+1
)
,利用“累加求和”即可证明.
解答: 证明:(1)∵an3+an2(1-an+1)+1=an+1(n∈N+),化为an+1=
a
3
n
+
a
2
n
+1
a
2
n
+1

∴an+1-an=
a
2
n
-an+1
a
2
n
+1
=
(an-
1
2
)2+
3
4
a
2
n
+1
>0,
∴an+1>an
(2)∵a1=1>0,an+1>an,∴?n∈N*,an>0,
1-
a
2
n
a
2
n+1
>0,
∴bn=(1-
an2
an+12
1
an
>0,∴0<
n
k-1
bk
另一方面:bn=(1-
an2
an+12
1
an
=
(an+1+an)(an+1-an)
an
a
2
n+1
2an+1(an+1-an)
an
a
2
n+1
=2(
1
an
-
1
an+1
)

n
k-1
bk2[(
1
a1
-
1
a2
)+(
1
a2
-
1
a3
)
+…+(
1
an
-
1
an+1
)]
=2(1-
1
an+1
)
<2.
∴0<
n
k-1
bk<2.
点评:本题考查了“累加求和”、“放缩法”、数列的单调性,考查了数列的变形能力,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AA1=1,AD=DC=
3
,在线段A1C1上有一点Q,且C1Q=
1
3
C1A1,求平面QDC与平面A1DC所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=esinx-x,现给出如下四个结论:
①f(x)是奇函数;
②f(x)是偶函数;
③f(x)在R上是增函数;
④f(x)在R上是减函数.
其中正确结论的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

用定义证明函数f(x)=1-
2
x
在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)的焦点F作一直线交抛物线于A、B两点,以AB为直径的圆与抛物线的准线相切于点C(-2,-2).
(1)求抛物线的标准方程
(2)求直线AB的方程
(3)求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax5+bx3+2,若f(-3)=15,则f(3)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数为偶函数的是(  )
A、f(x)=x2
B、f(x)=lnx
C、f(x)=ex
D、f(x)=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cosx[sin(x+
π
3
)-
3
sin(x+
π
2
)]+
3
4

(1)若f(
θ
2
+
12
)=
3
10
,0<θ<
π
2
,求tanθ的值;
(2)求函数f(x)的最小正周期和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,a1=1,S3=6,正项数列{bn}满足b1•b2•b3…bn=2 Sn
(1)求数列{an},{bn}的通项公式;
(2)若λbn>an对n∈N*均成立,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案