精英家教网 > 高中数学 > 题目详情
2.已知数列{an}的前n项和Sn满足关系式:
Sn=($\frac{1+{a}_{n}}{2}$)2且an>0.
(1)写出Sn与Sn-1(n≥2)的递推关系式,并求出Sn关于n的表达式;
(2)若bn=(-1)n•Sn(n∈N*),求数列{bn}的前n项和Tn

分析 (1)由Sn=($\frac{1+{a}_{n}}{2}$)2且an>0.可得Sn>0.当n=1时,${a}_{1}=(\frac{1+{a}_{1}}{2})^{2}$,解得a1.n≥2时,2$\sqrt{{S}_{n}}$=Sn-Sn-1+1,可得:$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=1.再利用等差数列的通项公式即可得出.
(2)bn=(-1)n•Sn=(-1)n•n2,对n分类讨论,利用“分组求和”方法、等差数列的前n项和公式即可得出.

解答 解:(1)∵Sn=($\frac{1+{a}_{n}}{2}$)2且an>0.∴Sn>0.
∴当n=1时,${a}_{1}=(\frac{1+{a}_{1}}{2})^{2}$,解得a1=1.
n≥2时,2$\sqrt{{S}_{n}}$=Sn-Sn-1+1,可得:$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=1.
∴数列$\{\sqrt{{S}_{n}}\}$是等差数列,首项为1,公差为1.
∴$\sqrt{{S}_{n}}$=1+(n-1)=n,
可得Sn=n2
(2)bn=(-1)n•Sn=(-1)n•n2
∴n=2k(k∈N*)时,数列{bn}的前n项和Tn=T2k=(22-12)+(42-32)+…+[n2-(n-1)2]=(2+1)+(4+3)+…+[n+(n-1)]=$\frac{n(n+1)}{2}$.
n=2k-1(k∈N*)时,数列{bn}的前n项和Tn=T2k-1=T2k-bn=$\frac{(n+1)(n+2)}{2}$-(n+1)2=$\frac{-{n}^{2}-n}{2}$.
∴Tn=$\left\{\begin{array}{l}{\frac{n(n+1)}{2},n=2k}\\{\frac{-{n}^{2}-n}{2},n=2k-1}\end{array}\right.$(k∈N*).

点评 本题考查了递推关系、分类讨论、“分组求和”方法、等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.短轴长等于8,离心率等于$\frac{3}{5}$的椭圆的标准方程为(  )
A.$\frac{x^2}{100}+\frac{y^2}{64}=1$B.$\frac{x^2}{100}+\frac{y^2}{64}=1$或$\frac{x^2}{64}+\frac{y^2}{100}=1$
C.$\frac{x^2}{25}+\frac{y^2}{16}=1$D.$\frac{x^2}{25}+\frac{y^2}{16}=1$或$\frac{x^2}{16}+\frac{y^2}{25}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.数列{an}的前n项和为Sn,2Sn+an=n2+2n+2,n∈N*
(Ⅰ)证明:{an-n}是等比数列,并求{an}的通项公式;
(Ⅱ)设Tn为数列{n(an-n)}的前n项和,求证:Tn$<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若复数z=$\frac{a+i}{2i}$(a∈R,i为虚数单位)的实部与虚部相等,则z的模等于(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn=2an-3•2n+4(其中n∈N*
(1)设bn=$\frac{{a}_{n}}{{2}^{n}}$,证明:数列{bn}是等差数列;
(2)设cn=4n+(-1)n-1•λ•$\frac{2{a}_{n+1}}{3n+2}$(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有cn+1>cn成立;
(3)设dn=$\frac{(3n+5)•{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$,数列{dn}的前n项和为Tn,求证:$\frac{2}{5}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)是定义在R上的偶函数,若当x<0时,f(x)=-log2(-2x),则f(32)=(  )
A.-32B.-6C.6D.64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.等差数列{an}的前n项和为Sn,且(a2-1)3+2016(a2-1)=sin$\frac{2011π}{3}$,(a2015-1)3+2016(a2015-1)=cos$\frac{2011π}{6}$,则S2016=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在空间中,下列结论正确的是(  )
A.空间三点确定一个平面
B.过直线外一点有且只有一条直线与已知直线垂直
C.如果一条直线与平面内的一条直线平行,则这条直线与平面平行
D.三个平面最多将可空间分成八块

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足an=1,且an=3an-1+3n(n≥2且n∈N*
(1)求证:数列{$\frac{{a}_{n}}{{3}^{n}}$}是等差数列:
(2)求数列{an}的通项公式:
(3)设数列{an}的前n项和为Sn,求证:$\frac{{S}_{n}}{{3}^{n}}$>$\frac{3}{2}n$-$\frac{7}{4}$.

查看答案和解析>>

同步练习册答案