精英家教网 > 高中数学 > 题目详情
4.执行如图所示的程序框图,若输出s=15,则框图中①处可以填入k<4.

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加变量k的平方到S并输出S,模拟程序的执行过程,分析出进行循环的条件,可得答案.

解答 解:模拟执行程序,可得
k=1,S=1
满足条件,执行循环体,S=2,k=2
满足条件,执行循环体,S=6,k=3
满足条件,执行循环体,S=15,k=4
由题意,此时应该不满足条件,退出循环,输出S的值为15,
所以判断框内可填写“k<4”,
故答案为:k<4.

点评 算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误,本题属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.正项数列{an}的前n项和Sn满足12Sn=${a}_{n}^{2}$+6an+5.且a1<2.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{3}{{a}_{n}{a}_{n+1}}$,Tn是数列{bn}的前n项和,求使Tn<$\frac{m}{20}$对所有n∈N*都成立的最小正整数m;
(3)记Cn=$\frac{1}{2}$($\frac{{a}_{n+1}}{{a}_{n}}$+$\frac{{a}_{n}}{{a}_{n+1}}$)(n∈N*),求和:Bn=C1+C2+…+Cn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知幂函数y=f(x)图象过点(9,3),则${∫}_{0}^{1}$f(x)dx等于$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则函数f(x)解析式f(x)=2sin(2x-$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.根据我国发布的《环境空气质量指数(AQI)技术规定》:空气质量指数划分为0~50、51~100、101~150、151~200、201~300和大于300六级,对应于空气质量指数的六个级别,指数越大,级别越高,说明污染越,说明污染越严重,对人体健康的影响也越明显.专家建议:当空气质量指数小于150时,可以户外运动;空气质量指数151及以上,不适合进行旅游等户外活动.以下是济南市2015年12月中旬的空气质量指数情况:
时间11日12日13日14日15日16日17日18日19日20日
AQI1491432512541385569102243269
(I)求12月中旬市民不适合进行户外活动的概率;
(Ⅱ)一外地游客在12月来济南旅游,想连续游玩两天,求适合旅游的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是(  )
A.y=x3B.y=|x+1|C.y=-x2D.y=|x|+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱柱ABC-A1B1C1中,AC=4,BC=3,AB=B1C=5,点D是线段AB的中点,四边形ACC1A1为正方形.
(1)求证:AC1∥平面B1CD;
(2)求三棱锥D-B1C1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=x+\frac{1}{x}$,则函数y=f(x)的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧视图、俯视图,在直观图中,M是BD的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)若N是BC的中点,证明:AN∥平面CME;
(2)证明:平面BDE⊥平面BCD.
(3)求三棱锥D-BCE的体积.

查看答案和解析>>

同步练习册答案