分析 (1)若“p或q”是真命题,“p且q”是假命题,则p、q两命题一真一假,进而可得实数a的取值范围;
(2)若¬p是¬q的必要不充分条件,则p是q的充分不必要条件,进而可得实数a的取值范围.
解答 解:(1)若p:关于x的方程x2-ax+4=0有实根为真,
则△=a2-16≥0,
解得:a≤-4或a≥4.
若q关于x的函数y=2x2+ax+4在[3,+∞)上是增函数为真,
则-$\frac{a}{4}≤3$,
∴a≥-12.
由“p或q”是真命题,“p且q”是假命题,p、q两命题一真一假,
当p真q假时:a<-12;当p假q真时:-4<a<4,
综上,a的取值范围为(-∞,-12)∪(-4,4).
(2)解(4x-3)2≤1得:$\frac{1}{2}$≤x≤1,
解x2-(2a+1)x+a(a+1)≤0得:a≤x≤a+1,
若¬p是¬q的必要不充分条件,则p是q的充分不必要条件,
则$\left\{\begin{array}{l}a≤\frac{1}{2}\\ a+1≥1\end{array}\right.$,解得:a∈[0,$\frac{1}{2}$]
点评 本题以命题的真假判断与应用为载体,考查了复合命题,充要条件,方程根的个数,函数的单调性等知识点,难度中档.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2009 | B. | 2009 | C. | -2010 | D. | 2010 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | $\sqrt{10}$ | C. | 5 | D. | 25 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 cm2 | B. | 4$\sqrt{2}$ cm2 | C. | 8 cm2 | D. | 8$\sqrt{2}$ cm2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com