精英家教网 > 高中数学 > 题目详情
6.已知数列{an}的前n项和Sn=$\frac{{n}^{2}+3n}{4}$,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=4${\;}^{{a}_{n}}$,求数列{$\frac{1}{{b}_{n}}$}的前n项和.

分析 (Ⅰ)当n=1时,a1=s1=1,当n≥2时,${a}_{n}={s}_{n}-{s}_{n-1}=\frac{{n}^{2}+3n}{4}-\frac{(n-1)^{2}+3(n-1)}{4}$=$\frac{n+1}{2}$;
(Ⅱ)由(Ⅰ)得${a}_{n}=\frac{n+1}{2},{b}_{n}={2}^{n+1}$;$\frac{1}{{b}_{1}}+\frac{1}{{b}_{2}}+\frac{1}{{b}_{3}}+…\frac{1}{{b}_{n}}$=$\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+\frac{1}{{2}^{4}}+…+\frac{1}{{2}^{n+1}}$=$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}=\frac{1}{2}(1-\frac{1}{{2}^{n}})$

解答 解:(Ⅰ)当n=1时,a1=s1=1,
当n≥2时,${a}_{n}={s}_{n}-{s}_{n-1}=\frac{{n}^{2}+3n}{4}-\frac{(n-1)^{2}+3(n-1)}{4}$=$\frac{n+1}{2}$
经检验${a}_{1}也符合{a}_{n}=\frac{n+1}{2}$,∴${a}_{n}=\frac{n+1}{2}…(n∈{N}^{+})$.
(Ⅱ)由(Ⅰ)得${a}_{n}=\frac{n+1}{2}∴{b}_{n}={2}^{n+1}$;
$\frac{1}{{b}_{1}}+\frac{1}{{b}_{2}}+\frac{1}{{b}_{3}}+…\frac{1}{{b}_{n}}$=$\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+\frac{1}{{2}^{4}}+…+\frac{1}{{2}^{n+1}}$=$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}=\frac{1}{2}(1-\frac{1}{{2}^{n}})$

点评 本题考查了等比数列的通项及求和,及公式an=sn-sn-1的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.(1)已知命题p:关于x的方程x2-ax+4=0有实根;命题q:关于x的函数y=2x2+ax+4在[3,+∞)上是增函数,若“p或q”是真命题,“p且q”是假命题,求实数a的取值范围;
(2)已知命题p:(4x-3)2≤1;命题q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆C(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0.有以下几个命题:
①直线l恒过定点(3,1);        
②圆C被y轴截得的弦长为 4$\sqrt{6}$;
③直线 l与圆C恒相交;        
④直线 l被圆C截得最短弦长时,l方程为2x-y-5=0,
其中正确命题的是(  )
A.②③B.①③④C.①②④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,若f(x)-g(x)=21-X,则g(-1)=$-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,则该四棱锥的外接球的半径为(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD的底面为直角梯形,AD∥BC,AD=2BC=2,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E为AD的中点,△PAD为正三角形,M是棱PC上的一点(异于端点).
(Ⅰ)若M为PC中点,求证:PA∥平面BME;
(Ⅱ)是否存在点M,使二面角M-BE-D的大小为30°.若存在,求出点M的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(x+a)ex(x>-3),其中a∈R.
(1)若曲线y=f(x)在点A(0,a)处的切线l与直线y=|2a-2|x平行,求l的方程;
(2)讨论函数y=f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数g(x)=xe(2-a)x(a∈R),e为自然对数的底数.
(1)讨论g(x)的单调性;
(2)若函数f(x)=lng(x)-ax2的图象与直线y=m(m∈R)交于A,B两点,线段AB中点的横坐标为x0,证明:f'(x0)<0.(f'(x)为函数f(x)的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn,a1=1,且3Sn=an+1-1.
(1)求数列{an}的通项公式;
(2)设等差数列{bn}的前n项和为Tn,a2=b2,T4=1+S3,求$\frac{1}{{b}_{1}•{b}_{2}}+\frac{1}{{b}_{2}•{b}_{3}}+…+\frac{1}{{b}_{10}{b}_{11}}$的值.

查看答案和解析>>

同步练习册答案