精英家教网 > 高中数学 > 题目详情
3.已知(x3+$\frac{1}{{x}^{2}}$)n展开式中第六项的二项式系数最大,求:
(1)展开式中不含x的项;
(2)${C}_{n}^{0}$-$\frac{1}{2}$${C}_{n}^{1}$+$\frac{1}{4}$${C}_{n}^{2}$-$\frac{1}{8}$${C}_{n}^{3}$+…+(-1)n•${C}_{n}^{n}$的值.

分析 (1)由题意易得n=10,可得通项Tk+1=${C}_{10}^{k}$•x30-5k,令30-5k=0可解得k=6,可得答案;
(2)易得${C}_{n}^{0}$-$\frac{1}{2}$${C}_{n}^{1}$+$\frac{1}{4}$${C}_{n}^{2}$-$\frac{1}{8}$${C}_{n}^{3}$+…+(-1)n•${C}_{n}^{n}$=(1-$\frac{1}{2}$)n,代入n值计算可得.

解答 解:(1)∵(x3+$\frac{1}{{x}^{2}}$)n展开式中第六项的二项式系数最大,
∴二项展开式共11项,∴n=10
∴展开式的通项Tk+1=${C}_{10}^{k}({x}^{3})^{10-k}(\frac{1}{{x}^{2}})^{k}$=${C}_{10}^{k}$•x30-5k
令30-5k=0可解得k=6,
∴展开式中不含x的项为T7=${C}_{10}^{6}$=${C}_{10}^{4}$=210;
(2)${C}_{n}^{0}$-$\frac{1}{2}$${C}_{n}^{1}$+$\frac{1}{4}$${C}_{n}^{2}$-$\frac{1}{8}$${C}_{n}^{3}$+…+(-1)n•${C}_{n}^{n}$
=(1-$\frac{1}{2}$)n=(1-$\frac{1}{2}$)10=$\frac{1}{1024}$

点评 本题考查二项式定理,涉及二项式系数的性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=($\sqrt{3}$sinx,sinx),$\overrightarrow{b}$=(cosx,sinx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,△ABC是边长为4的等边三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=2.
(1)证明:DE∥平面ABC;
(2)证明:AD⊥BE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,内角A,B,C的对边分别为a,b,c,若a=1,b=3,C=120°,则边c的长度为$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax2-(2a+1)x+lnx,a∈R.
(1)当a=1时,求f(x)的单调区间和极值;
(2)若关于x的方程f(x)=2ax2-2(a+1)x恰有两个不等的实根,求实数a的取值范围;
(3)设g(x)=ex-x-1,若对任意的x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a满足x+lgx=4,b满足x+10x=4,则a+b的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解不等式组$\left\{\begin{array}{l}{{x}^{2}+2|x|-3<0}\\{|{x}^{2}-x|≤2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在如图所示的一块形状为四棱柱的木料中,侧面AB-CD⊥底面ABB1A1;侧面ABCD是边长为4的菱形,且∠DAB=60°;底面ABB1A1是直角梯形,其中∠A1AB=90°,AA1∥BB1,AA1=3,BB1=1;P为面A1C1内的点.
(Ⅰ)为了经过点P和棱BC将木料锯开,应怎样画线?请说明理由;
(Ⅱ)若P为A1C1的中点,求按照(Ⅰ)的要求将木料锯开后较大木块的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.平行四边形ABCD中,AB=4,AD=3,BD=$\sqrt{14}$,E,F分别为AD,CD中点,BE.BF分别交AC于R,T,则|$\overrightarrow{AR}$|=2.

查看答案和解析>>

同步练习册答案