精英家教网 > 高中数学 > 题目详情
15.如图,在△ABC中,设$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow b$,点D在BC边上.
( I)若D为BC边中点,求证:$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow a$+$\overrightarrow b$)
( II)若$\overrightarrow{AD}$=λ$\overrightarrow a$+μ$\overrightarrow b$,求证:λ+μ=1.

分析 (Ⅰ)根据图形,可以得到$\overrightarrow{BC}=\overrightarrow{b}-\overrightarrow{a}$,从而$\overrightarrow{BD}=\frac{1}{2}(\overrightarrow{b}-\overrightarrow{a})$,根据$\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}$即可得出$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{a}+\overrightarrow{b})$;
(Ⅱ)根据点D在BC边上,便可得出存在t使得$\overrightarrow{BD}=t\overrightarrow{BC}=t(\overrightarrow{b}-\overrightarrow{a})$,进行向量的数乘运算即可求出$\overrightarrow{AD}=(1-t)\overrightarrow{a}+t\overrightarrow{b}$,根据平面向量基本定理即可得出$\left\{\begin{array}{l}{λ=1-t}\\{μ=t}\end{array}\right.$,从而得出λ+μ=1.

解答 证明:(I)∵$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AC}=\overrightarrow b$;
∴$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow b-\overrightarrow a$;
又D为BC边中点,∴$\overrightarrow{BD}=\frac{1}{2}\overrightarrow{BC}=\frac{1}{2}(\overrightarrow b-\overrightarrow a)$;
∴$\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{a+}\frac{1}{2}(\overrightarrow b-\overrightarrow a)=\frac{1}{2}(\overrightarrow a+\overrightarrow b)$;
(II)∵点D在BC边上,∴$\overrightarrow{BD}∥\overrightarrow{BC}$;
则存在实数t,使得$\overrightarrow{BD}=t\overrightarrow{BC}=t(\overrightarrow b-\overrightarrow a)$,
则$\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow a+t(\overrightarrow b-\overrightarrow a)=(1-t)\overrightarrow a+t\overrightarrow b$;
若$\overrightarrow{AD}=λ\overrightarrow a+μ\overrightarrow b$,则λ=1-t,μ=t;
∴λ+μ=(1-t)+t=1.

点评 考查向量减法、减法及数乘的几何意义,以及向量的数乘运算,共线向量和平面向量基本定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=lnx-$\frac{1}{2}$ax2-bx,若x=1是f(x)的极大值点,则a的取值范围为(  )
A.(-1,0)B.(-1,+∞)C.(0,+∞)D.(-∞,-1)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C的方程为x2+y2+2x-6y-6=0,O为坐标原点.
(Ⅰ)求过点M(-5,11)的圆C的切线方程;
(Ⅱ)若圆C上有两点P,Q关于直线x+my+4=0对称,并且满足$\overrightarrow{OP}•\overrightarrow{OQ}=-7$,求m的值和直线PQ的方程;
(Ⅲ)过点N(2,3)作直线与圆C交于A,B两点,求△ABC的最大面积以及此时直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若数列{an}满足a1=1,且an+1=4an+2n,则通项an=22n-1-2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l的参数方程为$\left\{\begin{array}{l}x=-t\\ y=-1+t\end{array}$(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(Ⅰ)写出直线l的极坐标方程;
(Ⅱ)求直线l与曲线C交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow a$=($\sqrt{3}$sinωx,cosωx),$\overrightarrow b$=(cosωx,-cosωx),(ω>0),函数f(x)=$\overrightarrow a$•$\overrightarrow b$+$\frac{1}{2}$,直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为$\frac{π}{4}$.
(1)求函数y=f(x)的单调增区间;
(2)若cosx≥$\frac{{\sqrt{2}}}{2}$,x∈(0,π),且f(x)-m=0有两个实根x1,x2
①求实数m的取值范围;
②求sin(x1+x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)函数f(x)=lnx-$\frac{a(x-1)}{x}$(x>0,a∈R).当a>0时,求证:函数f(x)的图象存在唯一零点的充要条件是a=1;
(2)求证:不等式$\frac{1}{lnx}$-$\frac{1}{x-1}$<$\frac{2}{3}$对于x∈(1,2)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知一个三角形的三边边长分别是3,4,5,设计一个算法,求出它的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题p:实数m使函数f(x)=$\frac{1}{3}$x3-(m-1)x2-4mx+1在[1,3]上不单调,命题q:实数m满足方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{2-m}$=1表示椭圆.
(1)若p∧q为真,求m的取值范围;
(2)若p∨q为真,求m的取值范围.

查看答案和解析>>

同步练习册答案