精英家教网 > 高中数学 > 题目详情
16.如图所示,在四棱锥S-ABCD中,底面ABCD是矩形,侧面SDC⊥底面ABCD,求证:平面SCD⊥平面SBC.

分析 由矩形性质得BC⊥CD,由侧面SDC⊥底面ABCD,得BC⊥平面SDC,由此能证明平面SCD⊥平面SBC.

解答 解:∵在四棱锥S-ABCD中,底面ABCD是矩形,
∴BC⊥CD,
∵侧面SDC⊥底面ABCD,
且侧面SDC∩底面ABCD=CD,
∴BC⊥平面SDC,
∵BC?平面SBC,
∴平面SCD⊥平面SBC.

点评 本题考查面面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=alnx+blgx+2,且$f({\frac{1}{2009}})=4$,则f(2009)的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若以原点为圆心,椭圆的焦半径c为半径的圆与该椭圆有四个交点,则该椭圆的离心率的取值范围为:($\frac{\sqrt{2}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,AB⊥PA,AB∥CD,且PB=BC=BD=$\sqrt{6}$,CD=2AB=2$\sqrt{2}$,∠PAD=120°,E和F分别是棱CD和PC的中点.
(1)求证:平面BEF⊥平面PCD;
(2)求直线PD与平面PBC所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$)-2cos2x+$\frac{3}{2}$.
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=1,b+c=2,f(A)=$\frac{1}{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若0<x1<x2<1,则下列判断正确的有③.
①e${\;}^{{x}_{2}}$-e${\;}^{{x}_{1}}$>lnx2-lnx1;②e${\;}^{{x}_{2}}$-e${\;}^{{x}_{1}}$<lnx2-lnx1;③x2e${\;}^{{x}_{1}}$>x1e${\;}^{{x}_{2}}$;④x2e${\;}^{{x}_{1}}$<x1e${\;}^{{x}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)满足关系式f(ax+2)=x+5(a>0且a≠1),则函数f(x)恒过定点(3,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.等腰Rt△ABC的斜边AB所在的直线方程是3x-y+2=0,C($\frac{14}{5}$,$\frac{2}{5}$),求直线AC和直线BC的方程和△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$\overrightarrow{a}$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{OA}$=$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{OB}$=$\overrightarrow{a}$+$\overrightarrow{b}$,若△AOB是以O为直角顶点的等腰直角三角形,则$\overrightarrow{b}$=($\frac{\sqrt{3}}{2},\frac{1}{2}$)或(-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$).

查看答案和解析>>

同步练习册答案