分析 (1)观察图象满足f′(x)=0的点附近的导数的符号的变化情况,来确定极小值,求出x0的值;
(2)根据图象可得f'(-1)=0,f'(1)=0,f(-1)=-4,建立三个方程,联立方程组求解即可.
解答 解:(1)由图象可知,
在(-∞,-1)上f'(x)<0,
在(-1,1)上f'(x)>0,
在(1,+∞)上f'(x)<0.
故f(x)在(-∞,-1),(1,+∞)上递减,在(-1,1)上递增.
因此f(x)在x=-1处取得极小值-4,所以x0=-1.
(2)f'(x)=3ax2+2bx+c,
由f'(-1)=0,f'(1)=0,f(-1)=-4,
得$\left\{\begin{array}{l}{3a-2b+c=0}\\{3a+2b+c=0}\\{a-b+c=4}\end{array}\right.$,
解得a=-2,b=0,c=6.
点评 本题主要考查了利用导数研究函数的极值、单调性,以及观察图形的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 表示该组上的个体在样本中出现的频率 | |
| B. | 表示取某数的频率 | |
| C. | 表示该组上的个体数与组距的比值 | |
| D. | 表示该组上的个体在样本中出现的频率与组距的比值 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10π | B. | 4π | C. | 16π | D. | 8π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com