精英家教网 > 高中数学 > 题目详情
3.设正数a,b,c满足a+b+c≤3,求证:$\frac{1}{a+1}$+$\frac{1}{b+1}$+$\frac{1}{c+1}$≥$\frac{3}{2}$.

分析 由于正数a,b,c满足a+b+c≤3,由柯西不等式,结合不等式的性质即可得证.

解答 证明:由于正数a,b,c满足a+b+c≤3,
由柯西不等式得,
$[{(a+1)+(b+1)+(c+1)}]•({\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}})$
$≥{({\sqrt{a+1}•\frac{1}{{\sqrt{a+1}}}+\sqrt{b+1}•\frac{1}{{\sqrt{b+1}}}+\sqrt{c+1}•\frac{1}{{\sqrt{c+1}}}})^2}$=32
所以$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}≥\frac{9}{a+b+c+3}≥\frac{9}{3+3}=\frac{3}{2}$.

点评 本题考查不等式的证明,注意运用柯西不等式和不等式的性质,考查推理和运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.某人有5把钥匙,其中2把能打开门,现随机取1把钥匙试着开门,不能开门就扔掉,现采用随机模拟的方法估计第三次才能打开门的概率:先由计算器产生1~5之间的整数随机数,1,2表示能打开门,3,4,5表示打不开门,再以每三个数一组,代表三次开门的结果,经随机模拟产生了20组随机数,453,254,341,134,543,523,452,324,534,435,535,314,245,531,351,354,345,413,425,553据此估计,该人第三次才打开门的概率(  )
A.0.2B.0.25C.0.15D.0.35

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设m,n∈(0,+∞),求证:$\frac{mn}{m+n}$$≤\frac{\sqrt{mn}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a>0,b>0,且a+b=1.
(Ⅰ)求ab的最大值;
(Ⅱ)求证:$({a+\frac{1}{a}})({b+\frac{1}{b}})≥\frac{25}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a、b、c都是正数,求证:
(I)$\frac{{b}^{2}}{a}$$+\frac{{c}^{2}}{b}$$+\frac{{a}^{2}}{c}$≥a十b+c;
(2)2($\frac{a+b}{2}$-$\sqrt{ab}$≤3($\frac{a+b+c}{3}$-$\root{3}{abc}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a1,a2,a3均为正数,且a1+a2+a3=1,求证:$\frac{1}{a_1}$+$\frac{1}{a_2}$+$\frac{1}{a_3}$≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某大学为了在2016年全国大学生成语听写大赛中取得优秀成绩,组织了100个人参加的成语听写大赛集训队集训,集训时间为期一个月.集训结束时,为了检查集训的效果,从这100个队员中随机抽取9名队员参加成语听写抽测,抽测的成绩设有A、B、C三个等级,分别对应5分,4分,3分,抽测的结果恰好各有3名队员进入三个级别.现从这9名队员中随机抽取n名队员(假设各人被抽取的可能性是均等的,1≤n≤9),再将抽取的队员的成绩求和.
(Ⅰ)当n=3时,记事件A={抽取的3人中恰有2人级别相同},求P(A);
(Ⅱ)当n=2时,若用ξ表示n个人的成绩和,求ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.用数学归纳法证明1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{{2^n}-1}}$<n(n∈N*,且n≥2),第一步要证的不等式是$1+\frac{1}{2}+\frac{1}{3}<2$.

查看答案和解析>>

同步练习册答案