分析 分别取特值验证命题①②;对数型函数的变化是先快后慢,当x=1时甲、乙、丙、丁四个物体又重合,从而判断命题③正确;结合对数型和指数型函数的图象变化情况,可知命题④正确;指数函数变化是先慢后快,当运动的时间足够长,最前面运动的物体一定是按照指数型函数运动的物体,即一定是甲物体.
解答 解:路程fi(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为:
${f_1}(x)={2^x}-1,{f_2}(x)={x^3},{f_3}(x)=x,{f_4}(x)={log_2}(x+1)$,
它们相应的函数模型分别是指数型函数,幂函数,一次函数,和对数型函数模型;
①当x=2时,f1(2)=3,f2(2)=8,∴该结论不正确;
②∵指数型的增长速度大于幂函数的增长速度,∴x>1时,甲总会超过乙的,∴该结论不正确;
③根据四种函数的变化特点,对数型函数的变化是先快后慢,当x=1时甲、乙、丙、丁四个物体重合,从而可知当0<x<1时,丁走在最前面,当x>1时,丁走在最后面,∴该结论正确;
④结合对数型和指数型函数的图象变化情况,可知丙不可能走在最前面,也不可能走在最后面,∴该结论正确;
⑤指数函数变化是先慢后快,当运动的时间足够长,最前面运动的物体一定是按照指数型函数运动的物体,即一定是甲物体,∴该结论正确.
∴正确结论的序号为:③④⑤.
故答案为:③④⑤.
点评 本题考查几种基本初等函数的变化趋势,关键是注意到对数函数、指数函数与幂函数的增长差异,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (0,1] | C. | (-∞,$\frac{5}{2}$) | D. | (-∞,$\frac{5}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{5}}{3}$ | D. | $\frac{\sqrt{7}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 过圆心 | B. | 相交而不过圆心 | C. | 相切 | D. | 相离 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | $\frac{1}{2}$ | D. | -1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com