精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=cos2x+asinx+2a-1,a∈R.
(1)当a=1时,求函数的最值并求出对应的x值;
(2)如果对于区间$[-\frac{π}{2},\frac{π}{2}]$上的任意一个x,都有f(x)≤5恒成立,求a的取值范围.

分析 (1)当a=1时,化简f(x)只有一个函数名,转化思想求解其最值可出对应的x值;
(2)讨论f(x)在区间$[-\frac{π}{2},\frac{π}{2}]$上最大值≤5,即可得f(x)≤5恒成立.可得a的取值范围.

解答 解:(1)∵a=1,
∴$f(x)={cos^2}x+sinx+1=-{sin^2}x+sinx+2=-{(sinx-\frac{1}{2})^2}+\frac{9}{4}$
当$sinx=\frac{1}{2}$,即$x=2kπ+\frac{π}{6}$或$x=2kπ+\frac{5π}{6}$,k∈Z时,$f{(x)_{max}}=\frac{9}{4}$;
当sinx=-1,即$x=2kπ-\frac{π}{2}$,k∈Z时,f(x)min=0.
(2)由f(x)=cos2x+asinx+2a-1=-sin2x+asinx+2a
令sinx=t∈[-1,1],则函数f(x)转化为g(t)=-t2+at+2a,
则:当$\frac{a}{2}≤-1$,即a≤-2时,g(t)在[-1,1]上单调递减,∴f(x)max=g(-1)=-1+a≤5,
即a≤6,于是a≤-2,
当$-1<\frac{a}{2}<1$,即-2<a<2时,$f{(x)_{max}}=g(\frac{a}{2})=\frac{a^2}{4}+2a≤5$,即a2+8a-20≤0,
∴-10≤a≤2,于是-2<a<2,
当$\frac{a}{2}≥1$,即a≥2时,g(t)在[-1,1]上单调递增,
∴f(x)max=g(1)=-1+3a≤5,即a≤2,
综上,a的取值范围为(-∞,2].

点评 本题考查三角函数的有界性,二次函数的最值,考查转化思想以及计算能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且满足an=2-3Sn(n∈N*
(Ⅰ)求数列{an}的通项公式
(Ⅱ)设bn=log2an,求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.类比等差数列,定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,则这个数列的前2017项和S2017=5042.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列各函数的导数:
(1)y=2x;         
(2)$y=x\sqrt{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知tanα=2,$\frac{sinα-4cosα}{5sinα+2cosα}$=(  )
A.$-\frac{1}{6}$B.$\frac{1}{6}$C.$\frac{7}{9}$D.$-\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.极坐标系的极点为直角坐标系xoy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=4(cosθ+sinθ).
(Ⅰ)求C的直角坐标方程;
(Ⅱ)直线l:$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=1+\frac{{\sqrt{3}}}{2}t\end{array}\right.(t$为参数)与曲线C交于A,B两点,定点E(0,1),求|EA|•|EB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足[f(x)]y=f(xy)”的是(  )
A.指数函数B.对数函数C.一次函数D.余弦函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知O、A、B是平面上的三个点,直线AB上有一个点C,满足$2\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow 0$,则$\overrightarrow{OC}$=(  )
A.$-\frac{1}{3}\overrightarrow{OA}+\frac{2}{3}\overrightarrow{OB}$B.$\frac{2}{3}\overrightarrow{OA}-\frac{1}{3}\overrightarrow{OB}$C.$-\overrightarrow{OA}+2\overrightarrow{OB}$D.$2\overrightarrow{OA}-\overrightarrow{OB}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.甲乙丙丁四个物体同时从某一点出发向同一个方向运动,其路程fi(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为${f_1}(x)={2^x}-1,{f_2}(x)={x^3},{f_3}(x)=x,{f_4}(x)={log_2}(x+1)$,
有以下结论:
①当x>1时,甲在最前面;
②当x>1时,乙在最前面;
③当0<x<1时,丁在最前面,当x>1时,丁在最后面;
④丙不可能在最前面,也不可能最最后面;
⑤如果它们已知运动下去,最终在最前面的是甲.
其中,正确结论的序号为③④⑤(把正确结论的序号都填上,多填或少填均不得分)

查看答案和解析>>

同步练习册答案