精英家教网 > 高中数学 > 题目详情
13.已知O、A、B是平面上的三个点,直线AB上有一个点C,满足$2\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow 0$,则$\overrightarrow{OC}$=(  )
A.$-\frac{1}{3}\overrightarrow{OA}+\frac{2}{3}\overrightarrow{OB}$B.$\frac{2}{3}\overrightarrow{OA}-\frac{1}{3}\overrightarrow{OB}$C.$-\overrightarrow{OA}+2\overrightarrow{OB}$D.$2\overrightarrow{OA}-\overrightarrow{OB}$

分析 根据平面向量的基本定理,把一个向量用平面上的两个不共线的向量来表示,这两个不共线的向量作为一组基底参与向量的运算,注意题目给的等式的应用

解答 解:$\overrightarrow{OC}$=$\overrightarrow{OB}$+$\overrightarrow{BC}$=$\overrightarrow{OB}$+2$\overrightarrow{AC}$=$\overrightarrow{OB}$+2($\overrightarrow{OC}$-$\overrightarrow{OA}$),
∴$\overrightarrow{OC}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$,
故选:D

点评 本题是向量之间的运算,运算过程简单,但应用广泛,向量具有代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知f(tanx)=sin2x-sinx•cosx,则f(2)=(  )
A.2B.-2C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=cos2x+asinx+2a-1,a∈R.
(1)当a=1时,求函数的最值并求出对应的x值;
(2)如果对于区间$[-\frac{π}{2},\frac{π}{2}]$上的任意一个x,都有f(x)≤5恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在60°角内有一点P,到两边的距离分别为1cm和2cm,则P到角顶点的距离为$\frac{2\sqrt{21}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-3\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)和圆x2+y2=16交于A,B两点,则线段AB的中点坐标为(  )
A.(3,-3)B.$(-\sqrt{3},3)$C.$(\sqrt{3},-3)$D.$(3,-\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知${({1-2x})^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$,则|a0|+|a1|+|a2|+…+|a7|=2187.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\frac{2lnx+{a}^{2}}{x}$+bx-2a(a∈R),其中b=${∫}_{0}^{\frac{π}{2}}$(2sin$\frac{t}{2}$•cos$\frac{t}{2}$)dt,若?x∈(1,2),使得f′(x)•x+f(x)>0成立,则实数a的取值范围为(  )
A.(-∞,1)B.(0,1]C.(-∞,$\frac{5}{2}$)D.(-∞,$\frac{5}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设x1=4,x2=5,x3=6,则该样本的标准差为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{7}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.高为$\sqrt{2}$的四棱锥S-ABCD的底面是边长为1的正方形,点S、A、B、C、D均同一球面上,底面ABCD的中心为O1,球心O到底面ABCD的距离为$\frac{{\sqrt{2}}}{2}$,则异面直线SO1与AB所成角的余弦值的范围为[0,$\frac{\sqrt{10}}{10}$].

查看答案和解析>>

同步练习册答案