精英家教网 > 高中数学 > 题目详情
16.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足[f(x)]y=f(xy)”的是(  )
A.指数函数B.对数函数C.一次函数D.余弦函数

分析 利用指数函数的性质及运算法则求解.

解答 解:在指数函数中,
y=ax满足(axy=axy
故具有性质“对任意的x>0,y>0,函数f(x)满足[f(x)]y=f(xy)”的是指数函数.
故选:A.

点评 本题考查指数函数性质的应用,是基础题,解题时要认真审题,注意指数函数的性质及运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知点F2,P分别为双曲线$\frac{{x}^{2}}{{a\;}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点与右支上的一点,O为坐标原点,若$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$),${\overrightarrow{O{F}_{2}}}^{2}$=${\overrightarrow{{F}_{2}M}}^{2}$且2$\overrightarrow{O{F}_{2}}$•$\overrightarrow{{F}_{2}M}$=a2+b2,则该双曲线的离心率为(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知sin θ、cos θ是关于x的方程x2-ax+a=0的两个根(a∈R).
(1)求sin3θ+cos3θ的值;
(2)求tan θ+$\frac{1}{tanθ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=cos2x+asinx+2a-1,a∈R.
(1)当a=1时,求函数的最值并求出对应的x值;
(2)如果对于区间$[-\frac{π}{2},\frac{π}{2}]$上的任意一个x,都有f(x)≤5恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若x,y满足$\left\{{\begin{array}{l}{x+y≥1}\\{mx-y≤0}\\{3x-2y+2≥0}\end{array}}\right.$且z=3x-y的最大值为2,则实数m的值为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在60°角内有一点P,到两边的距离分别为1cm和2cm,则P到角顶点的距离为$\frac{2\sqrt{21}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-3\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)和圆x2+y2=16交于A,B两点,则线段AB的中点坐标为(  )
A.(3,-3)B.$(-\sqrt{3},3)$C.$(\sqrt{3},-3)$D.$(3,-\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\frac{2lnx+{a}^{2}}{x}$+bx-2a(a∈R),其中b=${∫}_{0}^{\frac{π}{2}}$(2sin$\frac{t}{2}$•cos$\frac{t}{2}$)dt,若?x∈(1,2),使得f′(x)•x+f(x)>0成立,则实数a的取值范围为(  )
A.(-∞,1)B.(0,1]C.(-∞,$\frac{5}{2}$)D.(-∞,$\frac{5}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若实数x,y在条件$\left\{\begin{array}{l}x+y≤4\\ x≥1\\ y≥m\end{array}\right.$下,所表示的平面区域面积为2,则$\frac{x+y+2}{x+1}$的最小值为(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{2}{3}$D.2

查看答案和解析>>

同步练习册答案