精英家教网 > 高中数学 > 题目详情
7.已知sin θ、cos θ是关于x的方程x2-ax+a=0的两个根(a∈R).
(1)求sin3θ+cos3θ的值;
(2)求tan θ+$\frac{1}{tanθ}$的值.

分析 (1)利用韦达定理、结合正弦函数的值域求得a的值,再利用立方和公式求得sin3θ+cos3θ的值.
(2)利用同角三角函数的基本关系,求得要求式子的值.

解答 解:(1)由题意利用韦达定理知:sin θ+cos θ=a,sin θ•cos θ=a.
∵(sin θ+cos θ)2=1+2sin θcos θ,∴a2=1+2a.
解得:a=1-$\sqrt{2}$或a=1+$\sqrt{2}$.
∵sin θ≤1,cos θ≤1,∴sin θcos θ≤1,即a≤1,
∴a=1+$\sqrt{2}$舍去,a=1-$\sqrt{2}$.
∴sin3θ+cos3θ=(sin θ+cos θ)(sin2θ-sin θcos θ+cos2θ)=(sin θ+cos θ) (1-sin θcos θ)
=a(1-a)=$\sqrt{2}$-2.
(2)tan θ+$\frac{1}{tanθ}$=$\frac{sinθ}{cosθ}$+$\frac{cosθ}{sinθ}$=$\frac{{sin}^{2}θ{+cos}^{2}θ}{sinθ•cosθ}$=$\frac{1}{sinθcosθ}$=$\frac{1}{a}$=$\frac{1}{1-\sqrt{2}}$=-1-$\sqrt{2}$.

点评 本题主要考查韦达定理、正弦函数的值域,立方和公式、同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设集合A={x|2x≥4},集合B={x|y=lg(x-1)},则A∩B=(  )
A.[1,2)B.(1,2]C.[2,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,$cosB=\frac{{\sqrt{3}}}{3}$.
(Ⅰ)求△ADC的面积
(Ⅱ)若$BC=2\sqrt{3}$,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.类比等差数列,定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,则这个数列的前2017项和S2017=5042.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知{an}是等差数列,其前n项和为Sn,若a6=S3=12,则数列{an}的通项 an=2n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列各函数的导数:
(1)y=2x;         
(2)$y=x\sqrt{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知tanα=2,$\frac{sinα-4cosα}{5sinα+2cosα}$=(  )
A.$-\frac{1}{6}$B.$\frac{1}{6}$C.$\frac{7}{9}$D.$-\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足[f(x)]y=f(xy)”的是(  )
A.指数函数B.对数函数C.一次函数D.余弦函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列说法中,正确的有④⑤.(写出所有正确说法的序号)
①已知关于x的不等式mx2+mx+2>0的角集为R,则实数m的取值范围是0<m<4.
②已知等比数列{an}的前n项和为Sn,则Sn、S2n-Sn、S3n-S2n也构成等比数列.
③已知函数$f(x)=\left\{\begin{array}{l}1+{log_a}({x+1}),x≥0\\{x^2}+({4a-3})x+3a,x<0\end{array}\right.$(其中a>0且a≠1)在R上单调递减,且关于x的方程$|{f(x)}|=2-\frac{x}{3}$恰有两个不相等的实数解,则$\frac{1}{3}≤x≤\frac{3}{4}$.
④已知a>0,b>-1,且a+b=1,则$\frac{{a}^{2}+2}{a}$+$\frac{{b}^{2}}{b+1}$的最小值为$\frac{{3+2\sqrt{2}}}{2}$.
⑤在平面直角坐标系中,O为坐标原点,|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=|$\overrightarrow{OD}$|=1,$\overrightarrow{OB}$+$\overrightarrow{OC}$+$\overrightarrow{OD}$=$\overrightarrow{0}$,A(1,1),则$\overrightarrow{AD}•\overrightarrow{OB}$的取值范围是$[{-\frac{1}{2}-\sqrt{2},-\frac{1}{2}+\sqrt{2}}]$.

查看答案和解析>>

同步练习册答案