精英家教网 > 高中数学 > 题目详情
11.若x,y满足$\left\{{\begin{array}{l}{x+y≥1}\\{mx-y≤0}\\{3x-2y+2≥0}\end{array}}\right.$且z=3x-y的最大值为2,则实数m的值为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.2

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得m的值.

解答 解:由约束条件$\left\{{\begin{array}{l}{x+y≥1}\\{mx-y≤0}\\{3x-2y+2≥0}\end{array}}\right.$作出可行域如图,
z=3x-y的最大值为2,
联立$\left\{\begin{array}{l}{3x-2y+2=0}\\{3x-y=2}\end{array}\right.$,解得A(2,4),
化目标函数z=3x-y为y=3x-z,
由图可知,当直线mx-y=0必须过A,可得2m-4=0,
解得:m=2.
故选:D.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知等比数列{an}中,首项a1=3,公比q>1,且3(an+2+an)-10an+1=0(n∈N*).
(1)求数列{an}的通项公式;
(2)设{bn+$\frac{1}{3}$an}是首项为1,公差为2的等差数列,求数列{bn}的通项公式和前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知{an}是等差数列,其前n项和为Sn,若a6=S3=12,则数列{an}的通项 an=2n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知tanα=2,$\frac{sinα-4cosα}{5sinα+2cosα}$=(  )
A.$-\frac{1}{6}$B.$\frac{1}{6}$C.$\frac{7}{9}$D.$-\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知ξ~B(n,0.3),Dξ=2.1,则n的值为(  )
A.10B.7C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足[f(x)]y=f(xy)”的是(  )
A.指数函数B.对数函数C.一次函数D.余弦函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.锐角△ABC中,已知$a=\sqrt{3},A=\frac{π}{3}$,则b2+c2+3bc的取值范围是(  )
A.(5,15]B.(7,15]C.(7,11]D.(11,15]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若对任意的x1,x2∈[$\frac{1}{2}$,2],都有$\frac{a}{{x}_{1}}$+x1lnx1≥x23-x22-3成立,则实数a的取值范围是(  )
A.(0,+∞)B.[1,+∞)C.(-∞,0)D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设$z=\frac{2}{1-i}+{(1-i)^2}$,则$|\overline z|$=(  )
A.$\sqrt{3}$B.1C.2D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案