| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | 2 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得m的值.
解答
解:由约束条件$\left\{{\begin{array}{l}{x+y≥1}\\{mx-y≤0}\\{3x-2y+2≥0}\end{array}}\right.$作出可行域如图,
z=3x-y的最大值为2,
联立$\left\{\begin{array}{l}{3x-2y+2=0}\\{3x-y=2}\end{array}\right.$,解得A(2,4),
化目标函数z=3x-y为y=3x-z,
由图可知,当直线mx-y=0必须过A,可得2m-4=0,
解得:m=2.
故选:D.
点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{6}$ | B. | $\frac{1}{6}$ | C. | $\frac{7}{9}$ | D. | $-\frac{7}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 指数函数 | B. | 对数函数 | C. | 一次函数 | D. | 余弦函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (5,15] | B. | (7,15] | C. | (7,11] | D. | (11,15] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | [1,+∞) | C. | (-∞,0) | D. | (-∞,-1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 1 | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com