精英家教网 > 高中数学 > 题目详情
1.已知等比数列{an}中,首项a1=3,公比q>1,且3(an+2+an)-10an+1=0(n∈N*).
(1)求数列{an}的通项公式;
(2)设{bn+$\frac{1}{3}$an}是首项为1,公差为2的等差数列,求数列{bn}的通项公式和前n项和Sn

分析 (1)利用等比数列的通项公式即可得出.
(2)利用等差数列的通项公式可得bn,再利用等差数列与等比数列的求和公式即可得出.

解答 解:(1)等比数列{an}中,3(an+2+an)-10an+1=0(n∈N*).
∴$3{a}_{n}({q}^{2}+1)$-10anq=0,化为:3q2-10q+3=0,q>1,解得q=3.
∴an=3n
(2)∵{bn+$\frac{1}{3}$an}是首项为1,公差为2的等差数列,
∴bn+$\frac{1}{3}$an=1+2(n-1),
∴bn=-3n-1+(2n-1).
∴数列{bn}的通项公式和前n项和Sn=$-\frac{{3}^{n}-1}{3-1}$+$\frac{n(1+2n-1)}{2}$
=$\frac{1}{2}(1-{3}^{n})$+n2

点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.多项式(x2-x-y)5的展开式中,x7y项的系数为(  )
A.20B.40C.-15D.160

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知三棱柱ABC-A1B1C1的直观图和三视图如图所示,E是棱CC1上一点.
(1)若CE=2EC1,求三棱锥E-ACB1的体积.
(2)若E是CC1的中点,求C到平面AEB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex-1+ax,a∈R.
(1)讨论函数f(x)的单调区间;
(2)若?x∈[1,+∞),f(x)+lnx≥a+1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线ω:y2=ax(a>0)上一点,P(t,2)到焦点F的距离为2t
(Ⅰ)求抛物线ω的方程
(Ⅱ)如图已知点D的坐标为(4,0),过抛物线ω的焦点F的直线交抛物线ω于M,N两点,若过D和N两点的直线交抛物线ω的准线于Q点,求证:直线MQ与x轴交于一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点F2,P分别为双曲线$\frac{{x}^{2}}{{a\;}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点与右支上的一点,O为坐标原点,若$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$),${\overrightarrow{O{F}_{2}}}^{2}$=${\overrightarrow{{F}_{2}M}}^{2}$且2$\overrightarrow{O{F}_{2}}$•$\overrightarrow{{F}_{2}M}$=a2+b2,则该双曲线的离心率为(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如果f(3x)=2x,则f(6)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=alnx+$\frac{a+1}{2}{x^2}$+1.
(1)当a=-$\frac{1}{2}$时,求f(x)在区间$[{\frac{1}{e},e}]$上的最大值与最小值;
(2)讨论函数f(x)的单调性;
(3)当-1<a<0时,任意x>0有f(x)>1+$\frac{a}{2}ln({-a})$恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若x,y满足$\left\{{\begin{array}{l}{x+y≥1}\\{mx-y≤0}\\{3x-2y+2≥0}\end{array}}\right.$且z=3x-y的最大值为2,则实数m的值为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

同步练习册答案