分析 (1)利用等比数列的通项公式即可得出.
(2)利用等差数列的通项公式可得bn,再利用等差数列与等比数列的求和公式即可得出.
解答 解:(1)等比数列{an}中,3(an+2+an)-10an+1=0(n∈N*).
∴$3{a}_{n}({q}^{2}+1)$-10anq=0,化为:3q2-10q+3=0,q>1,解得q=3.
∴an=3n.
(2)∵{bn+$\frac{1}{3}$an}是首项为1,公差为2的等差数列,
∴bn+$\frac{1}{3}$an=1+2(n-1),
∴bn=-3n-1+(2n-1).
∴数列{bn}的通项公式和前n项和Sn=$-\frac{{3}^{n}-1}{3-1}$+$\frac{n(1+2n-1)}{2}$
=$\frac{1}{2}(1-{3}^{n})$+n2.
点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}+1}{2}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com