精英家教网 > 高中数学 > 题目详情
12.己知(x2+$\frac{1}{x}$)n的展开式的各项系数和为32,则展开式中x4的系数为10.

分析 在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得

解答 解:由题意,在(x2+$\frac{1}{x}$)n的展开式中,
令x=1,可得各项系数和为2n=32,n=5.
故展开式的通项公式为Tr+1=${C}_{5}^{r}$•x10-2r•x-r=${C}_{5}^{r}$•x10-3r
令10-3r=4,求得r=2,
∴展开式中x4的系数为${C}_{5}^{2}$=10,
故答案为:10

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xoy中,点M的坐标为(-1,2),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρcosθ+ρsinθ-1=0
(I)判断点M与直线l的位置关系;
(Ⅱ)设直线l与抛物线y=x2相交于A,B两点,求点M到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知i是虚数单位,则$\frac{2-i}{i}$等于(  )
A.1+2iB.1-2iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不可能把直线$y=\frac{3}{2}x+b$作为切线的曲线是(  )
A.$y=-\frac{1}{x}$B.y=sinxC.y=lnxD.y=ex

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a+b)(sinA-sinB)=(b+c)sinC,则A=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点A(-1,0),B(1,0),过定点M(0,2)的直线l上存在点P,使得$\overrightarrow{PA}•\overrightarrow{PB}<0$,则直线l的倾斜角α的取值范围是(  )
A.$(\frac{π}{3},\frac{2π}{3})$B.$[\frac{π}{3},\frac{2π}{3}]$C.$[0,\frac{π}{3}]∪[\frac{2π}{3},π)$DD.$[0,\frac{π}{3})∪(\frac{2π}{3},π)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将边长为2的等边△ABC沿x轴正方向滚动,某时刻A与坐标原点重合(如图),设顶点A(x,y)的轨迹方程是y=f(x),关于函数y=f(x)有下列说法:
①f(x)的值域为[0,2];
②f(x)是周期函数且周期为6;
③f(x)<f(4)<f(2015);
④滚动后,当顶点A第一次落在x轴上时,的图象与x轴所围成的面积为$\frac{8π}{3}$+$\sqrt{3}$.
其中正确命题的序号为①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=x4+e|x|,则满足不等式2f(lnt)-f(ln$\frac{1}{t}$)≤f(2)的实数t的集合为(  )
A.[e-1,e]B.[e-2,e2]C.[0,e2]D.[e-2,e]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知Sn=3+7+13+…+(2n+2n-1),S10=a•b•c,其中a,b,c∈N*,则a+b+c的最小值为68.

查看答案和解析>>

同步练习册答案