精英家教网 > 高中数学 > 题目详情
6.已知直线l与平面α相交但不垂直,m为空间内一条直线,则下列结论一定不成立的是(  )
A.m⊥l,m?αB.m⊥l,m∥αC.m∥l,m∩α≠∅D.m⊥l,m⊥α

分析 对4个选项分别进行判断,即可得出结论.

解答 解:设过l和l在平面α内的射影的平面为β,则当m⊥β时,有m⊥l,m∥α或m?α,故A,B正确.
若m∥l,则m与平面α所成的夹角与l与平面α所成的夹角相等,即m与平面α斜交,故C正确.
若m⊥α,设l与m所成的角为θ,则0<θ<$\frac{π}{2}$.即m与l不可能垂直,故D错误.
故选:D.

点评 本题考查了空间线面位置关系的判断,考查学生的空间想象能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.如图,在正方体ABCD-A1B1C1D1中,棱AB的中点为P,若光线从点P出发,依次经三个侧面BCC1B1,DCC1D1,ADD1A1反射后,落到侧面ABB1A1(不包括边界),则入射光线PQ与侧面BCC1B1所成角的正切值的范围是(  )
A.($\frac{3}{4}$,$\frac{5}{4}$)B.($\frac{2\sqrt{17}}{17}$,4)C.($\frac{\sqrt{5}}{5}$,$\frac{3}{2}$)D.($\frac{3\sqrt{5}}{10}$,$\frac{5}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)的定义域为R,当x∈[-2,2]时,f(x)单调递减,且函数f(x+2)为偶函数,则下列结论正确的是(  )
A.f(π)<f(3)<f($\sqrt{2}$)B.f(π)<f($\sqrt{2}$)<f(3)C.f($\sqrt{2}$)<f(3)<f(π)D.f($\sqrt{2}$)<f(π)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.三次函数f(x)=ax3-$\frac{3}{2}$x2+2x+1的图象在点(1,f(1))处的切线与x轴平行,则实数a=(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.持续性的雾霾天气严重威胁着人们的身体健康,汽车的尾气排放是造成雾霾天气的重要因素之一.为此,某城市实施了机动车尾号限行,该市报社调查组为了解市区公众对“车辆限行”的态度,随机选取了30人进行调查,将他们的年龄(单位:岁)数据绘制成频率分布直方图(图1),并将调查情况进行整理后制成表2:
表2:
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
频数3663
赞成人数245421
(Ⅰ)由于工作人员粗心,不小心将表2弄脏,遗失了部分数据,请同学们将表2中的数据恢复,并估计该市公众对“车辆限行”的赞成率和被调查者的年龄平均值;
(Ⅱ)把频率当作概率估计赞成车辆限行的情况,若从年龄在[55,65),[65,75]的被调查者中随机抽取一个人进行追踪调查,求被选2人中至少一个人赞成车辆限行的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设抛物线K:x2=2py(p>0),焦点为F,P是K上一点,K在点P处的切线为l,d为F到l的距离,则(  )
A.$\frac{d}{|PF|}$=pB.$\frac{d}{|PF{|}^{2}}$=pC.$\frac{d}{|PF|}$=2pD.$\frac{{d}^{2}}{|PF|}$=$\frac{p}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义[x]表示不超过x的最大整数,例如[2.11]=2,[-1.39]=-2,执行如下图所示的程序框图,则输出m的值为
(  )
A.$\frac{19}{3}$B.$\frac{53}{8}$C.$\frac{171}{6}$D.$\frac{185}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.简阳羊肉汤已入选成都市级非遗项目,成为简阳的名片.当初向各地作了广告推广,同时广告对销售收益也有影响.在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(Ⅰ)根据频率分布直方图,计算图中各小长方形的宽度;
(Ⅱ)根据频率分布直方图,估计投入4万元广告费用之后,销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元)12345
销售收益y(单位:百万元)2327
表中的数据显示,x与y之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算y关于x的回归方程.回归直线的斜率和截距的最小二乘估计公式分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a,b分别是△ABC内角A,B的对边,且bsin2A=$\sqrt{3}$acosAsinB,函数f(x)=sinAcos2x-sin2$\frac{A}{2}$sin 2x,x∈[0,$\frac{π}{2}$].
(Ⅰ)求A;
(Ⅱ)求函数f(x)的值域.

查看答案和解析>>

同步练习册答案