精英家教网 > 高中数学 > 题目详情
求过点P(2,3)且与圆x2+y2=4相切的直线方程.
考点:圆的切线方程
专题:直线与圆
分析:切线的斜率存在时设过点P的圆的切线斜率为k,写出点斜式方程再化为一般式.根据圆心到切线的距离等于圆的半径这一性质,由点到直线的距离公式列出含k的方程,由方程解得k,然后代回所设切线方程即可.切线斜率不存在时,球心方程验证即可.
解答: 解:将点P(2,3)代入圆的方程得22+32=13>4,∴点P在圆外,
当过点P的切线斜率存在时,设所求切线的斜率为k,
由点斜式可得切线方程为y-3=k(x-2),即kx-y-2k+3=0,
|-2k+3|
k2+1
=2,解得k=
5
12

故所求切线方程为
5
12
x-y-
5
6
+3=0,即5x-12y+36=0.
当过点P的切线斜率不存在时,方程为x=2,也满足条件.
故所求圆的切线方程为5x-12y+36=0或x=2.
点评:本题考查直线与圆的位置关系,考查切线方程.若点在圆外,所求切线有两条,特别注意当直线斜率不存在时的情况,不要漏解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求过直线x+3y-7=0与已知圆x2+y2+2x-2y-3=0的交点,且在两坐标轴上的四个截距之和为8的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a2+8a+16
+|b-1|=0,当k取何值时,方程kx2+ax+b=0有两个不相等实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的二次项系数为负,对任意x∈R恒有f(3-x)=f(3+x),试问当f(2+2x-x2)与f(2-x-2x2)满足什么关系时才有-3<x<0?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=lg(m2-2m-2)+(m2+3m+2)i.
(1)当z为纯虚数时,求实数m的值;
(2)当z为实数时,求实数m的值;
(3)当复数z在复平面内对应的点位于第二象限时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
a
x
,其中a∈R.
(Ⅰ)当a=-1时判断f(x)的单调性;
(Ⅱ)若g(x)=f(x)+ax在其定义域内为减函数,求实数a的取值范围;
(Ⅲ)当a=0时f(x)的图象关于y=x对称得到函数h(x),若直线y=kx与曲线y=2x+
1
h(x)
没有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数a,b,c成等比数列,非零x,y实数分别是a,b和b,c的等差中项,则
a
x
+
c
y
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示(单位cm),则4个这样的几何体的体积之和为
 
cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{xn}的各项为不等于1的正数,数列{yn}满足
yn
logaxn
=2(a>0,且a≠1),设y3=18,y6=12.若数列{yn}的前n项和Sn有最大值,则这个最大值是
 
,此时n=
 

查看答案和解析>>

同步练习册答案