精英家教网 > 高中数学 > 题目详情
12.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,-4),|$\overrightarrow{c}$|=$\sqrt{5}$,若($\overrightarrow{a}$+$\overrightarrow{b}$)$•\overrightarrow{c}$=$\frac{5}{2}$,则$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为$\frac{2π}{3}$.

分析 设$\overrightarrow{c}$=(x,y),根据题中的条件求出x+2y=-$\frac{5}{2}$,即$\overrightarrow{a}•\overrightarrow{c}$=-$\frac{5}{2}$,再利用两个向量的夹角公式求出cosθ的值,由此求得θ的值.

解答 解:设$\overrightarrow{c}$=(x,y),
由向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,-4),|$\overrightarrow{c}$|=$\sqrt{5}$,
且($\overrightarrow{a}$+$\overrightarrow{b}$)$•\overrightarrow{c}$=$\frac{5}{2}$,
可得-x-2y=$\frac{5}{2}$,
即有x+2y=-$\frac{5}{2}$,
即$\overrightarrow{a}•\overrightarrow{c}$=-$\frac{5}{2}$,
设$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为等于θ,
则cosθ=$\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}|•|\overrightarrow{c}|}$=$\frac{-\frac{5}{2}}{\sqrt{5}×\sqrt{5}}$=-$\frac{1}{2}$.
再由0≤θ≤π,
可得 θ=$\frac{2π}{3}$,
故答案为:$\frac{2π}{3}$.

点评 本题主要考查两个向量的夹角公式的应用,求出$\overrightarrow{a}•\overrightarrow{c}$=-$\frac{5}{2}$是解题的关键,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知集合M={x∈Z|x≥x2},N={-1,0,1},则(∁RM)∩N={-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△AOB上,点P为边AB上的一点,且|$\overrightarrow{AP}$|=2|$\overrightarrow{PB}$|.
(1)试用$\overrightarrow{OA},\overrightarrow{OB}$表示$\overrightarrow{OP}$;
(2)若|$\overrightarrow{OA}$|=3,|$\overrightarrow{OB}$|=2,且∠AOB=$\frac{π}{3}$,求$\overrightarrow{OP}•\overrightarrow{AB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ex-ax-a(其中a∈R,e是自然对数的底数,e=2.71828…).
(I)当a=e时,求函数f(x)的极值;
(Ⅱ)当0≤a≤1时,求证f(x)≥0;
(Ⅲ)求证:对任意正整数n,都有(1+$\frac{1}{2}}$)(1+$\frac{1}{2^2}}$)…(1+$\frac{1}{2^n}}$)<e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知一个棱锥的三视图如下,根据图中标出的尺寸(单位:cm),可得这个棱锥的侧面积是(  )
A.4cm2B.12cm2C.8+4$\sqrt{2}$cm2D.4+4$\sqrt{2}$+2$\sqrt{3}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={1,2,3,4},函数f(x)的定义域、值域都是A,且对于任意i∈A,f(i)≠i,设a1,a2,a3,a4是1,2,3,4的任意一个排列,定义数表$(\begin{array}{l}{{a}_{1}}&{{a}_{2}}&{{a}_{3}}&{{a}_{4}}\\{f({a}_{1})}&{f({a}_{2})}&{f({a}_{3})}&{f({a}_{4})}\end{array})$,若两个数表的对应位置上至少有一个数不同,就说这是两张不同的数表.
(1)求满足条件的不同的数表的张数;
(2)若a1=i(i=1,2,3,4),从所有数表中任意抽取一张,记ξ为表中a1>f(i)的个数,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,过F2作斜率为-2的直线交双曲线的渐近线于P,Q两点,M为线段PQ的中点,若直线MF1平行于其中一条渐近线,则该双曲线的离心率为$\sqrt{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.四条直线l1:x+3y-15=0,l2:kx-y-6=0,l3:x+5y=0,l4:y=0围成一个四边形,求出使此四边形有外接圆的k值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}满足a2+a4=-6,a3+a5=-2.
(1)求{an}的通项公式;
(2)求数列{|an|}的前n项和Tn

查看答案和解析>>

同步练习册答案