精英家教网 > 高中数学 > 题目详情
3.若所有形如3a+$\sqrt{2}$b(a∈Z,b∈Z)的数组成集合A,判断6-2$\sqrt{2}$是不是集合A中的元素.

分析 根据元素与集合的关系进行判断

解答 解:所有形如3a+$\sqrt{2}$b(a∈Z,b∈Z)的数组成集合A,
当a=2,b=-2时,可得集合A中的元素为:6-2$\sqrt{2}$.
∴6-2$\sqrt{2}$是集合A中的元素.

点评 本题主要考查元素与集合的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知常数ω>0,f(x)=-1+2$\sqrt{3}$sinωxcosωx+2cos2ωx图象的对称中心得到对称轴的距离的最小值为$\frac{π}{4}$,若f(x0)=$\frac{6}{5}$,$\frac{π}{4}$≤x0≤$\frac{π}{2}$,则cos2x0=(  )
A.$\frac{3+2\sqrt{3}}{10}$B.$\frac{3-2\sqrt{2}}{10}$C.$\frac{3+4\sqrt{3}}{10}$D.$\frac{3-4\sqrt{3}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a>0,且a≠1,若ab>1,则(  )
A.ab>bB.ab<bC.a>bD.a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow{a}$=(-1,3)与$\overrightarrow{b}$=(0,6),求5$\overrightarrow{a}$-2$\overrightarrow{b}$的坐标,并求|5$\overrightarrow{a}$-2$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2sin(x+$\frac{π}{6}$)-2cosx,x∈[$\frac{π}{2}$,π].
(1)若sinx=$\frac{4}{5}$,求函数f(x)的值;
(2)求函数f(x)的值域和对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC中,2$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,求$\frac{{S}_{△OBC}}{{S}_{△ABC}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知在△ABC中,AB=AC=6,∠BAC=120°,D是BC边上靠近点B的四等分点,F是AC边的中点,若点G是△ABC的重心,则$\overrightarrow{GD}$•$\overrightarrow{AF}$=-$\frac{21}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点与它的一个顶点的连线构成等腰直角三角形,直线x+y=0与以椭圆C的右顶点为圆心,以2b为半径的圆相交所得的弦长为2$\sqrt{3}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过椭圆C右焦点F2的直线l与椭圆交于点P、Q,若以OP,OQ为邻边的平行四边形是矩形,求满足该条件的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图所示,正方体ABCD-A1B1C1D1的棱长为1,E,F,G分别是棱BC,CC1,CD的中点,平面α过点B1且与平面EFG平行,则平面α被该正方体外接球所截得的截面圆的面积为为$\frac{2}{3}π$.

查看答案和解析>>

同步练习册答案