精英家教网 > 高中数学 > 题目详情
10.为了解学生寒假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表:
本数
人数
性别
012345
男生01432 2
女生001331
(I)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率;
(II)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为 X,求随机变量 X的分布列和数学期望;
(III)试判断男学生阅读名著本数的方差$s_1^2$与女学生阅读名著本数的方差$s_2^2$的大小(只需写出结论).

分析 (I)全班有12个男生,8个女生,由此求出男、女各选1人的方法数,再求出这两名学生阅读名著本数之和为4的方法数,由此能求出这两名学生阅读名著本数之和为4的概率.
(II)由已知随机变量 X的可能的取值有0,1,2,3,4,分别求出相应的概率,由此能求出X的分布列和数学期望.
(III)利用调查表能判断男学生阅读名著本数的方差$s_1^2$与女学生阅读名著本数的方差$s_2^2$的大小.

解答 解:(I)全班有12个男生,8个女生,
所以男、女各选1人的方法数m=12×8=96
而这两名学生阅读名著本数之和为4的方法数n=1×3+4×1=7,
所以这两名学生阅读名著本数之和为4的概率为p=$\frac{n}{m}=\frac{7}{96}$…(3分)
(II)由已知随机变量 X的可能的取值有0,1,2,3,4,
${P}({{X}=0})=\frac{C_4^0C_4^4}{C_8^4}=\frac{1}{70}$,
${P}({{X}=1})=\frac{C_4^1C_4^3}{C_8^4}=\frac{8}{35}$,
${P}({{X}=2})=\frac{C_4^2C_4^2}{C_8^4}=\frac{18}{35}$,
${P}({{X}=3})=\frac{C_4^3C_4^1}{C_8^4}=\frac{8}{35}$,
${P}({{X}=4})=\frac{C_4^4C_4^0}{C_8^4}=\frac{1}{70}$,
∴X的分布列为:

 X 0 1 2 3 4
 P $\frac{1}{70}$ $\frac{8}{35}$ $\frac{18}{35}$ $\frac{8}{35}$ $\frac{1}{70}$
∴X的数学期望为${E}{X}=1×\frac{8}{35}+2×\frac{18}{35}+3×\frac{8}{35}+4×\frac{1}{70}=2$…(9分)
(III)$s_1^2<s_2^2$…(12分)

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,考查方差大小的判断,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.数列{an} 满足a1=1,an+1=2an+3(n∈N*),则a4=29.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知一个盒子中装有3个黑球和4个白球,现从该盒中摸出3个球,假设每个球被摸到的可能性相同.
(Ⅰ)若每次摸一个球,摸后不放回,求三次摸到的球的颜色依次为“白,黑,白”的概率;
(Ⅱ)设摸到的白球的个数为m,黑球的个数为n,令X=m-n,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{xlnx}{x-1}$.求曲线f(x)在点(e,f(e))(e为自然对数的底数)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,B=$\frac{π}{4}$,则sinA•sinC的最大值是$\frac{2+\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为了解学生寒假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表:
本数
人数
性别
012345
男生01432 2
女生001331
(I)分别计算男生、女生阅读名著本数的平均值x1,x2和方差$s_1^2$,$s_2^2$;
(II)从阅读4本名著的学生中选两名学生在全校交流读后心得,求选出的两名学生恰好是一男一女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.${(x+\frac{m}{{\sqrt{x}}})^6}$展开式中x3的系数为15,则实数m的值为±1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)为定义在[-1,1]上的偶函数,且在[0,1]上为单调递增函数,则f(2x+1)>f(${\frac{x}{2}$+1)的解集为[-1,-$\frac{4}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.焦点在y轴上的椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{6}$=1(a>0)的离心率是$\frac{{\sqrt{3}}}{3}$,则实数a为(  )
A.3B.2C.2或3D.4或9

查看答案和解析>>

同步练习册答案