精英家教网 > 高中数学 > 题目详情
5.已知O是原点,P是椭圆$\left\{\begin{array}{l}{x=3cosφ}\\{y=2sinφ}\end{array}\right.$上相当于φ=$\frac{π}{6}$的一点,求OP的斜率.

分析 利用$\frac{y}{x}$=$\frac{2}{3}$tanφ即可得出.

解答 解:∵P是椭圆$\left\{\begin{array}{l}{x=3cosφ}\\{y=2sinφ}\end{array}\right.$上相当于φ=$\frac{π}{6}$的一点,
∴$\frac{y}{x}$=$\frac{2}{3}$tanφ=$\frac{2}{3}$$tan\frac{π}{6}$=$\frac{2\sqrt{3}}{9}$.
∴OP的斜率为$\frac{2\sqrt{3}}{9}$.

点评 本题考查了椭圆的参数方程、直线的斜率,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.求直线3x+4y-2=0被圆(x-1)2+(y-1)2=2所截得的弧长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线f(x)=ax+bln(x-1)-a-1在点(2,f(2))处的切线为y=0
(1)求实数a,b的值;
(2)设函数g(x)=mf(x+1)+$\frac{{x}^{2}}{2}$-mx,其中1<m<3,求证:当x∈(1,e)时,-$\frac{3}{2}$(1+ln3)<g(x)<$\frac{{e}^{2}}{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在极坐标系中,已知三点M(2,$\frac{5}{3}$π),N(2,0),P(2$\sqrt{3}$,$\frac{π}{6}$),将M,N,P三点的极坐标化为直角坐标.判断M,N,P三点是否在同一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.用1,2,3,4,5这五个数,组成没有重复数字的三位数,其中1不在个位的数共有80种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知tanα,tanβ是方程x2+px-q=0的两根.
(1)用p,q表示tan(α+β);
(2)是否存在负数p,q使得sin2(α+β)+psin(α+β)cos(α+β)-qcos2(α+β)-p=2且pq=1?若存在,求出p,q的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知直三棱柱ABC-A1B1C1中,AA1=AB=AC,AB⊥AC,M、N、Q分别是CC1,BC,AC的中点,点P在线段A1B1上运动,且A1P=λA1B1
(1)证明:无论λ取何值,总有AM⊥平面PNQ.
(2)若AC=1,试求三棱锥P-MNQ的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足:Sn=1-an(n∈N*),其中Sn为数列{an}的前n项和,求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在三棱锥P-ABC中,PA=a,AB=AC=$\sqrt{2}$a,∠PAB=∠PAC=45°,∠PBC=60°,设D是线段AB上异于A,B的任意一点,DE⊥PB于点E.
(1)求证:AP∥平面DEC;
(2)若D是线段AB的中点,求二面角E-DC-B的大小的余弦值.

查看答案和解析>>

同步练习册答案