精英家教网 > 高中数学 > 题目详情
抛物线x2=6y的准线方程为
 
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:先根据抛物线的标准方程得到焦点在y轴上以及2p=6,再直接代入即可求出其准线方程.
解答: 解:因为抛物线的标准方程为:x2=6y,焦点在y轴上;
所以:2p=6,即p=3,
所以:
p
2
=
3
2

∴准线方程y=-
3
2

故答案为:y=-
3
2
点评:本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

E是长方体ABCD-A1B1C1D1的棱长CC1所在直线上一点,C1E=CC1=BC=
1
2
AB=1.
(1)求异面直线D1E与B1C所成角的余弦值;
(2)求点A到直线B1E的距离;
(3)求直线AC与平面D1EB1所成的角;
(4)求两平面B1D1E与ACB1所形成的锐二面角的余弦值;
(5)求点A到平面D1EB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明:方程3x=12只有一个实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log2x与y=g(x)的图象关于直线y=x对称,则g(2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(x-1,2),
b
=(2,1)且
a
b
,则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在m∈R,使函数f(x)=|x2-16|-x2+4x-m在[-1,a](a∈N*)上有三个零点,则满足条件的a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,焦点在坐标轴上,点P(-2,0)到其渐近线的距离为
2
6
3
.若过P点作斜率为
2
2
的直线交双曲线于A,B两点,交y轴于M点,且PM是PA与PB的等比中项,则双曲线的半焦距为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=loga(x2-ax+3)(a>0且a≠1),满足对任意实数x1、x2,当x2>x1
a
2
时,f(x1)-f(x2)<0,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+
2tanx
1+tan2x
-(1+cos2x)•tan2x,给出下列四个命题:
①函数f(x)的最小正周期为π,且在[
π
8
5
8
π]上递减;
②直线x=
π
8
是函数f(x)的图象的一条对称轴;
③对称中心(kπ+
π
8
,0);
④若x∈[0,
π
8
]时函数f(x)的值域为[1,
2
].
其中正确的命题的序号是
 

查看答案和解析>>

同步练习册答案