精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=($\frac{1}{6}$)x-$\frac{1}{2}$x,若x0是函数f(x)的零点,则(  )
A.x0∈(-1,0)B.x0∈(0,$\frac{1}{2}$)C.x0∈($\frac{1}{2}$,1)D.x0∈(1,2)

分析 直接利用函数的零点判定定理推出结果即可.

解答 解:函数f(x)=($\frac{1}{6}$)x-$\frac{1}{2}$x,
f($\frac{1}{2}$)=$\sqrt{\frac{1}{6}}$-$\frac{1}{2}$×$\frac{1}{2}$=$\frac{1}{\sqrt{6}}$-$\frac{1}{4}$>0,f(1)=$\frac{1}{6}$-$\frac{1}{2}$<0,
可得x0∈($\frac{1}{2}$,1).
故选:C.

点评 本题考查函数的零点判定定理的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.下列说法中正确的是(3)(4).
(1)y=$\sqrt{{x}^{2}}$与y=$\root{3}{{x}^{3}}$是相等的函数.  
(2)奇函数的图象一定过原点.
(3)函数一定是映射,映射不一定是函数.
(4)定义在R上的奇函数在(0,+∞)上有最大值M,则在(-∞,0)上一定有最小值-M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,直线l的参数方程$\left\{\begin{array}{l}{x=\sqrt{3}t}\\{y=2+t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:ρ=4sinθ
(1)直线l的参数方程化为极坐标方程;
(2)求直线l与曲线C交点的极坐标(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)用辗转相除法求204与85的最大公约数,并用更相减损术验证;
(2)用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x,当x=2时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.小龙与小虎约好国庆节去天柱山游玩,决定十月一日早晨7:45到8:15在高河新车站会面,并约定先到者等候另一人15分钟,若未等到,可直接乘车前往天柱山,求小龙与小虎一同前往天柱山的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=1+sinx,其导函数为f′(x),则f′($\frac{π}{3}$)=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{3}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{3x}{2x+3}$,数列{an}满足a1=1,an+1=f(an),n∈N*
(1)求a2,a3,a4的值;
(2)求证:数列{$\frac{1}{{a}_{n}}$}是等差数列;
(3)设数列{bn}满足bn=an-1•an(n≥2),b1=3,Sn=b1+b2+…+bn,若${S_n}<\frac{m-2014}{2}$对一切n∈N*成立,求最小正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x-y-5=0,AC边上的高BH所在直线的方程为x-2y-5=0.求
(1)求点H的坐标;
(2)若$\overrightarrow{BP}=\frac{1}{2}(\overrightarrow{BA}+\overrightarrow{BH})$,求直线BP的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)为定义R上的奇函数,且f(x)在(0,+∞)上是增函数,f(-3)=0,则f(-4),f(-1),f(2),f(π)四个数中大于零的数的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案