精英家教网 > 高中数学 > 题目详情
求解析式:
(1)已知f(x)为二次函数,且f(2x+1)+f(2x-1)=16x2-4x+6,求f(x).
(2)已知f(
x
+1)=x+2
x
,求f(x).
(3)如果函数f(x)满足方程f(x)+2f(-x)=x,x∈R,求f(x).
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:(1)待定系数法.
(2)这是含未知数f(x)的等式,比较抽象,在函数的定义域和对应法则不变的条件下,自变量变换为其他字母的代数式,对函数本身并无影响.
(3)因为当x∈R时,都有f(x)+2f(-x)=x,所以利用方程思想解得f(x).
解答: 解:(1)待定系数法:设f(x)=ax2+bx+c(a≠0),
∴f(2x+1)=a(2x+1)2+b(2x+1)+c,
f(2x-1)=a(2x-1)2+b(2x-1)+c,
∴f(2x+1)+f(2x-1)=8ax2+4bx+2a+2c=16x2-4x+6,
8a=16
4b=-4
2a+2c=6
,解得
a=2
b=-1
c=1

∴f(x)=2x2-x+1;
(2)方法一:配凑法,
∵f(
x
+1)=x+2
x
=(
x
+1)2-1(
x
+1≥1),
∴f(x)=x2-1(x≥1);
方法二:换元法,
x
+1=t,则x=(t-1)2(t≥1),
∴f(t)=(t-1)2+2
(t-1)2
=t2-1,
∴f(x)=x2-1(x≥1);
(3)∵f(x)+2f(-x)=x,当x∈R时成立,
用-x替换x得,f(-x)+2f(x)=-x.
得到方程组
f(x)+2f(-x)=x,①
f(-x)+2f(x)=-x,②

②×2-①,得3f(x)=-3x,∴f(x)=-x.
点评:(i)配凑法简便易行,但对变形能力、观察能力要求较高,换元法易掌握,但利用这种方法时要注意自变量取值范围的变化情况,否则得不到正确的解析式.
(ii)利用方程思想,采用解方程的方法消去不需要的函数式子,而得到f(x)的表达式,此种方法称为消去法,也称为解方程法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f′(x)是函数f(x)=cosx的导函数,若g(x)=f(x)+
3
f′(x),则使函数y=g(x+a)是偶函数的一个a值是(  )
A、
π
6
B、-
π
6
C、
π
3
D、-
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如果实数x、y满足(x+2)2+y2=3,求
y
x
的最大值、2y-x的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l上有两点到平面α的距离相等,则直线l与平面α的关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
4
-
y2
16
=1的渐近线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ABC-A1B1C1是底面边长为2的正三棱柱,O为BC的中点.
(Ⅰ)设A1O与底面A1B1C1所成的角的大小为α,二面角B-AO-B1的大小为β,
求证:tanβ=
3
tanα;     
(Ⅱ)若点C到平面AB1C1的距离为
3
2
,求正三棱柱ABC-A1B1C1的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an=
4an-1
kan-1+1
(n≥2).
(1)求数列{an}的通项公式;
(2)当1<k<3时,证明不等式:a1+a2+…+an
3n-8k
k

查看答案和解析>>

科目:高中数学 来源: 题型:

用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有
 
个(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(
3
sinx,sinx),
b
=(cosx,sinx),x∈[0,
π
2
]
(1)若|
a
|=|
b
|,求x的值
(2)设函数f(x)=
a
b
,求f(x)的取值范围.

查看答案和解析>>

同步练习册答案