分析 设出等比数列的首项和公比,由题意列式,整体运算得到${{a}_{1}}^{2}{q}^{4}=16$,则a3可求.
解答 解:设等比数列an的公比为q,则{$\frac{1}{{a}_{n}}$}也是等比数列,
且公比为$\frac{1}{q}$,依题意得:$\left\{\begin{array}{l}{\frac{{a}_{1}(1-{q}^{5})}{1-q}=31}\\{\frac{\frac{1}{{a}_{1}}(1-\frac{1}{{q}^{5}})}{1-\frac{1}{q}}=\frac{31}{16}}\end{array}\right.$,
两式作比得:${{a}_{1}}^{2}{q}^{4}=16$,即${a}_{3}={a}_{1}{q}^{2}=±4$,
∵an>0,∴a3=4.
故答案为:4.
点评 本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -11 | B. | -7 | C. | 5 | D. | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,x2+2x+3>0 | B. | ?x∈R,x2+2x+3≥0 | C. | ?x∈R,x2+2x+3<0 | D. | ?x∈R,x2+2x+3≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com