精英家教网 > 高中数学 > 题目详情
15.四棱锥P-ABCD中,PA⊥底面ABCD,PA=2$\sqrt{3}$,BC=CD=2,∠ACB=∠ACD=$\frac{π}{3}$
(1)求证:BD⊥平面PAC;
(2)求三棱锥P-BDC的体积.

分析 (1)连接AC,BD,利用等腰三角形的性质可得:BD⊥AC,利用线面垂直的性质可得:PA⊥BD,即可证明BD⊥平面PAC;
(2)由PA⊥底面ABCD,利用三棱锥P-BDC的体积V=$\frac{1}{3}PA•{S}_{△BCD}$,即可得出.

解答 (1)证明:连接AC,BD,
∵BC=CD=2,∠ACB=∠ACD=$\frac{π}{3}$,
∴BD⊥AC,
∵PA⊥底面ABCD,
∴PA⊥BD,
又PA∩AC=A,
∴BD⊥平面PAC;
(2)解:∵S△BCD=$\frac{1}{2}•BC•BDsin12{0}^{°}$=$\frac{1}{2}×2×2×\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
又PA⊥底面ABCD,
∴三棱锥P-BDC的体积V=$\frac{1}{3}PA•{S}_{△BCD}$=$\frac{1}{3}×2\sqrt{3}×\sqrt{3}$=2.

点评 本题考查了等腰三角形的性质、线面垂直的判定与性质定理、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在各项均为正项的等比数列{an}中,已知a1+a2+a3+a4+a5=31,$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+\frac{1}{{a}_{3}}+\frac{1}{{a}_{4}}+\frac{1}{{a}_{5}}$=$\frac{31}{16}$,则a3=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式xA${\;}_{3}^{3}$<A${\;}_{x}^{3}$的解集是(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆⊙C:x2+y2+2x-4y+1=0
(1)若圆⊙C的切线在x轴,轴上截距相等,求此切线方程;
(2)从圆⊙C外一点P(x0,y0)向圆引切线PM,M为切点,O为原点,若|PM|=|PO|,求使$\sqrt{{{({{x_0}-2})}^2}+{y_0}^2}$取最小值时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,△ABC是正三角形,AE和CD都垂直于平面ABC,且AE=AB=2,CD=1,F是BE的中点.
(1)求证:DF∥平面ABC;
(2)求三棱锥E-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+bx+c(x≤0)}\\{2(x>0)}\end{array}\right.$,若f(-2)=f(0),f(-1)=-3,求关于x的方程f(x)=x的解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若方程|x2-2x-1|-t=0有四个不同的实数根x1、x2、x3、x4,且x1<x2<x3<x4,则2(x4-x1)+(x3-x2)的取值范围是(  )
A.(8,6$\sqrt{2}$)B.(6$\sqrt{2}$,4$\sqrt{5}$)C.[8,4$\sqrt{5}$]D.(8,4$\sqrt{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若集合A={lg1,lne},B={x∈Z|x2+x≤0},则集合C={z|z=x+y,x∈A,y∈B}所有真子集的个数为(  )
A.3B.7C.8D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数$f(x)=asin(x+\frac{π}{4})+\sqrt{3}sin(x-\frac{π}{4})$是偶函数,则实数a的值为-$\sqrt{3}$.

查看答案和解析>>

同步练习册答案