精英家教网 > 高中数学 > 题目详情
请判断下列函数y=
9-x2
|x+5|-5
的奇偶性,并写出证明过程.
考点:函数奇偶性的判断
专题:函数的性质及应用
分析:先求函数的定义域,利用函数奇偶性的定义即可得到结论.
解答: 解:函数f(x)是奇函数,
当9-x2≥0时,即-3≤x≤3时,分母|x+5|-5=x+5-5=x,
此时y=f(x)=
9-x2
|x+5|-5
=
9-x2
x
,函数的定义域的定义域为[-3,0)∪(0,3],
则f(-x)=
9-x2
-x
=-
9-x2
x
=-f(x),
即函数f(x)是奇函数.
点评:本题主要考查函数的奇偶性的判断,先求出函数的定义域是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知定点A(-1,1).动点P到点(0,
1
4
)的距离比P到y=-1的距离小
3
4

(1)求点P的轨迹C的方程;
(2)若Q是轨迹C上异于点P的一个点,且
PQ
OA
(λ>0).直线OP与QA交于点M.问:是否存在点P,使得△PQA和△PAM的面积满足S△PQA=4S△PAM?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,线段AB的两个端点A、B分别在x轴、y轴上滑动,|AB|=5,点M是线段AB上一点,且
AM
MB
(λ>0).
(1)求点M的轨迹E的方程,并指明轨迹E是何种曲线;
(2)当λ=
2
3
时,过点P(1,1)的直线与轨迹E交于C、D两点,且P为弦CD的中点,求直线CD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=
3
3
x与圆心在x轴正半轴、半径为2的圆C交于两点A、B,且弦AB的长为2
3

(Ⅰ)求圆C的方程;
(Ⅱ)若点P(m,n)在圆C上,求
3
m+n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=(sinx+cosx)2在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{an}.
(I)求数列{an}的通项公式;
(Ⅱ)令bn=2nan,其中n∈N*,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(1+cosα,sinα),
b
=(1-cosβ,sinβ),
c
=(1,0),α∈(0,π),β∈(π,2π),
a
c
的夹角为θ1
b
c
的夹角为θ2,若θ12=
π
4
,求sin
α-β
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若不等式|-4x+b|<6的解集为(-1,2),求b的值;
(2)若不等式x2-5x+a≥0的解集为(-∞,2]∪[b,+∞),求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,an+1=an+
1
n(n+1)
(n∈N*),则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
log2x, x≥1
-x2-2x+3, x<1
,则不等式f(x)≥1的解集为
 

查看答案和解析>>

同步练习册答案