精英家教网 > 高中数学 > 题目详情
2.在${(2{x^2}-\frac{1}{x})^6}$二项展开式中,常数项是60.

分析 利用二项式定理的通项公式即可得出.

解答 解:${(2{x^2}-\frac{1}{x})^6}$二项展开式的通项公式:Tr+1=${∁}_{6}^{r}$(2x26-r$(-\frac{1}{x})^{r}$=(-1)r${∁}_{6}^{r}$26-rx12-3r
令12-3r=0,解得r=4.
∴常数项为${∁}_{6}^{4}×{2}^{2}$=60.
故答案为:60.

点评 本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=log2g(x)+(k-1)x.
(1)若g(log2x)=x+1,且f(x)为偶函数,求实数k的值;
(2)当k=1,g(x)=ax2+(a+1)x+a时,若函数f(x)的值域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ax+b,且f(3)=7,f(5)=-1,那么f(0)=19.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知Sn是等差数列{an}的前n项和,且S6>S7>S5,给出下列四个命题:
①d<0;②S11>0;③使Sn>0的最大n值为12;④数列{Sn}中的最大项为S11
其中正确命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法错误的是(  )
A.命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”
B.如果命题“?p”与命题“p∨q”都是真命题,则命题q一定是真命题
C.若命题:?x0∈R,x02-x0+1<0,则?p:?x∈R,x2-x+1≥0
D.“sinθ=$\frac{1}{2}$”是“θ=$\frac{π}{6}$”的充分必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=f(x)在定义域(-1,1)上是减函数,且f(2a-1)<f(1-a),则实数a的取值范围是(  )
A.($\frac{2}{3},+∞$)B.($\frac{2}{3},1)$C.(0,2)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设a是实数,f(x)=a-$\frac{1}{{2}^{x}+1}$(x∈R)
(1)如果f(x)为奇函数,试确定a的值.
(2)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.${({\root{3}{x}-\frac{1}{x}})^8}$二项展开式的常数项为28.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{f(x-4),x>2}\\{{e}^{x},-2≤x≤2}\\{f(-x),x<-2}\end{array}$,则f(-2017)=(  )
A.1B.eC.$\frac{1}{e}$D.e2

查看答案和解析>>

同步练习册答案