精英家教网 > 高中数学 > 题目详情
2.在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥平面ABCD,PA=AB,E是PC的中点.
(1)求证:平面EBD⊥平面ABCD;
(2)求二面角E-BC-A的大小.

分析 (1)设AC∩BD=O,推导出OE∥PA,由此能证明平面EBD⊥平面ABCD.
(2)取线段BC的中点F,连接OF,EF,推导出∠EFO是二面角E-BC-A的平面角,由此能求出二面角E-BC-A的大小.

解答 证明:(1)设AC∩BD=O,
∵底面ABCD是正方形,∴O是AC中点,
∵E,O分别为线段PC,AC的中点
∴OE∥PA,
∵PA⊥平面ABCD∴OE⊥平面ABCD
∵OE?平面BDEPABCDE
∴平面EBD⊥平面ABCD…(6分)
解:(2)取线段BC的中点F,连接OF,EF
∵ABCD是正方形,F是线段BC的中点O
∴OF⊥平面BCF,
∵OE⊥平面ABCD,
∴OE⊥BC,∴BC⊥平面OEF
∴EF⊥BC,∴∠EFO是二面角E-BC-A的平面角,…(9分)
在直角三角形OEF中,OE=OF,
∴∠EFO=45°,即二面角E-BC-A的大小为45°.…(12分)

点评 本题考查面面垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.数列{an}满足a1+2a2+22a3+…+2n-1an=4n
(1)求通项an
(2)求数列{an}的前n项和 Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ex-ax,a∈R.
(Ⅰ)若函数f(x)在x=0处的切线过点(1,0),求a的值;
(Ⅱ)若函数f(x)在(-1,+∞)上不存在零点,求a的取值范围;
(Ⅲ)若a=1,求证:对$x∈R,f(x)≥\frac{1+x}{f(x)+x}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1-x}{ax}$+lnx在(1,+∞)上是增函数,且a>0.
(1)求a的取值范围;
(2)求函数g(x)=ln(1+x)-x在[0,+∞)上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知四边形ABCD满足AD∥BC,AB=AD=CD=$\frac{1}{2}$BC=2,E是BC的中点,将△BAE沿AE折成△B1AE,使面B1AE⊥面AECD,F为棱B1D上一点.
(1)若F为B1D的中点,求证:B1D⊥面AEF;
(2)若B1E⊥AF,求二面角C-AF-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线y2=-x与直线l:y=k(x+1)相交于A,B两点,
(Ⅰ)求k的取值范围;
(Ⅱ)O为抛物线顶点,求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C:x2+y2-2x-24=0,直线ax-y+5=0(a>0)与圆交于A,B两点.
(Ⅰ)求实数a的取值范围;
(Ⅱ)若弦AB的垂直平分线l过点P(-2,4),求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在整数集Z中,被5所除得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4;给出四个结论:
(1)2015∈[0];(2)-3∈[3];(3)Z=[0]∪[1]∪[2]∪[3]∪[4];(4)“整数a,b属于同一“类”的充要条件是“a-b∈[0]”.
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l:4x+ay-5=0与直线l′:x-2y=0相互垂直,圆C的圆心与点(2,1)关于直线l对称,且圆C过点M(-1,-1).
(1)求直线l与圆C的方程;
(2)已知N(2,0),过点M作两条直线分别与圆C交于P,Q两点,若直线MP,MQ的斜率满足kMP+kMQ=0,求证:直线PQ的斜率为1.

查看答案和解析>>

同步练习册答案