精英家教网 > 高中数学 > 题目详情
4.设X~(1,22),则P(-1<X≤3)=0.9544  P(-3<X≤5)=0.6826
(参考数据:P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974)

分析 根据变量符合正态分布,和所给的μ和σ的值,根据3σ原则,得到P(-1<X≤3)=P(1-2<X≤1+2)=0.9544,P(-3<X≤5)=P(1-4<X≤1+4)=0.6826,即可得到结果.

解答 解:∵随机变量X服从正态分布N(μ,σ2),P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-σ<X≤μ+σ)=0.6826,μ=1,σ=2,
∴P(-1<X≤3)=P(1-2<X≤1+2)=0.9544,P(-3<X≤5)=P(1-4<X≤1+4)=0.6826,
故答案为:0.9544;0.6826.

点评 本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知二次函数f(x)=-x2+(b-2)x+c的图象关于y轴对称,且f(0)=1,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若sinα=$\frac{1}{5}$,且α是第二象限角,则$\frac{sin2α+si{n}^{2}α}{co{s}^{2}α}$ 的值为(  )
A.$\frac{\sqrt{6}}{4}$B.-$\frac{\sqrt{6}}{4}$C.$\frac{\sqrt{6}}{6}$+$\frac{1}{24}$D.-$\frac{\sqrt{6}}{6}+\frac{′1}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数$f(x)=a-\sqrt{-{x^2}-4x}$和$g(x)=\frac{4}{3}x+1$,已知x∈[-4,0]时恒有f(x)≤g(x),则实数a的取值范围为(-∞,-$\frac{13}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$sinα=\frac{{\sqrt{5}}}{5}$,且$α∈(\frac{π}{2},π)$,则tan2α=(  )
A.2B.$\frac{4}{3}$C.-2D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a+b=1,对?a,b∈(0,+∞),$\frac{1}{a}+\frac{4}{b}≥|x-10|-|x+6|$恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.y=x-ex的极大值为(  )
A.1B.-1C.0D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ex+2x2-3x
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若存在x∈[1,3],使得关于x的不等式f(x)≥ax成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若方程kx2+x-1=0只有一个实数根,求实数k的值0或-$\frac{1}{4}$,.

查看答案和解析>>

同步练习册答案