对于函数,
(1)判断并证明函数的单调性;
(2)是否存在实数a,使函数为奇函数?证明你的结论
科目:高中数学 来源: 题型:解答题
若函数f(x)对定义域中任意x均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称.
(1)已知函数f(x)=的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(-∞,0)上的解析式;
(3)在(1)(2)的条件下,当t>0时,若对任意实数x∈(-∞,0),恒有g(x)<f(t)成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
函数的定义域为(0,1](为实数).
⑴当时,求函数的值域;
⑵若函数在定义域上是减函数,求的取值范围;
⑶求函数在x∈(0,1]上的最大值及最小值,并求出函数取最值时的值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)
设R,m,n都是不为1的正数,函数
(1)若m,n满足,请判断函数是否具有奇偶性. 如果具有,求出相
应的t的值;如果不具有,请说明理由;
(2)若,且,请判断函数的图象是否具有对称性. 如果具
有,请求出对称轴方程或对称中心坐标;若不具有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题12分)设函数y=x+ax+bx+c的图像,如图所示,且与y=0在原点相切,若函数的极小值为–4,
(1)求a、b、c的值;
(2)求函数的递减区间。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com