分析 由题意可得an+1-an=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,再用累加法求解.
解答 解:∵an+1=an+$\frac{1}{n(n+1)}$,
∴an+1-an=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴a2-a1=1-$\frac{1}{2}$,
a3-a2=$\frac{1}{2}$-$\frac{1}{3}$,
…
an-an-1=$\frac{1}{n-1}$-$\frac{1}{n}$,
累加可得an-a1=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n-1}$-$\frac{1}{n}$)=1-$\frac{1}{n}$,
∴an=$\frac{3}{2}$-$\frac{1}{n}$.
点评 本题考查了累加法求数列的通项公式,以及裂项求和,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{10}$ | B. | -$\frac{\sqrt{2}}{10}$ | C. | $\frac{7\sqrt{2}}{10}$ | D. | -$\frac{7\sqrt{2}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ③④ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\sqrt{2}$,+∞) | B. | ($\sqrt{3}$,+∞) | C. | (2,+∞) | D. | ($\sqrt{5}$,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com