精英家教网 > 高中数学 > 题目详情
已知二面角α-l-β的大小为600,m、n为异面直线,且m⊥α,n⊥β,则m、n所成的角为
 
考点:二面角的平面角及求法
专题:空间角
分析:过二面角α-l-β内一点P,分别作PA∥m,PB∥n,设平面PAB交l于O,则∠AOB为二面角α-l-β的平面角,由此能求出异面直线m、n所成的角.
解答: 解:如图,过二面角α-l-β内一点P,
分别作PA∥m,PB∥n,
则PA⊥α,PB⊥β,且l⊥平面PAB.
设平面PAB交l于O,则l⊥OA,l⊥OB,
∠AOB为二面角α-l-β的平面角,
即∠AOB=60°.故∠APB=120°,
则异面直线m、n所成的角为60°.
故答案为:60°.
点评:本题考查异面直线所成的角的大小的求法,是中档题,解题时要注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列叙述:
(1)集合N中最小的正数是1;
(2)若-a∈N,则a∈N
(3)方程x2-6x+9=0的解集是{3,3};
(4){4,3,2}与{3,2,4}是不同的集合.
其中正确的叙述个数是(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

若正项等差数列{an}的第一,二,三项分别加上2,4,10后恰为等比数列{bn}的第三,四,五项,且数列{an}的前三项之和为12,则an=
 
,bn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点F为椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点,若椭圆上存在点A使△AOF为正三角形,那么椭圆的离心率为(  )
A、
2
2
B、
3
2
C、
3
-1
2
D、
3
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

求曲线C:y=x2-2x+2关于点P(-2,1)的对称曲线C1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,四边形ABCD是正方形,CD=PD,∠ADP=90°,∠CDP=120°,E,F,G分别为PB,BBC,AP的中点.
(Ⅰ)求证:平面EFG∥平面PCD;
(Ⅱ)若CD=PD=2,求三棱锥E-CDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-
y2
n
=1的离心率不小于
3
,则该双曲线的焦点到渐近线的最小距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2xlog2e-2lnx-ax+3的一个极值点在区间(1,2)内,则实数a的取值范围是(  )
A、(1,3)
B、(1,2)
C、(0,3)
D、(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(x2-4x+4)3的展开式中x的系数是
 

查看答案和解析>>

同步练习册答案