精英家教网 > 高中数学 > 题目详情
19.已知定义域为(0,+∞)的单调函数f(x)满足:?x∈(0,+∞),f(f(x)-log2x)=3,则函数g(x)=f(x)-sin2πx-2的零点的个数为(  )
A.1B.2C.3D.4

分析 由条件求得f(x)=2+log2x,本题即求数y=f(x)的图象和函数y=sin2πx+2的图象的交点个数,数形结合可得结论.

解答 解:根据题意,对任意的x∈(0,+∞),都有f[f(x)-log2x]=3,
又由f(x)是定义在(0,+∞)上的单调函数,则f(x)-log2x为定值.
设t=f(x)-log2x,则f(x)=t+log2x,
又由f(t)=3,可得t+log2t=3,可解得t=2,故f(x)=2+log2x.
函数g(x)=f(x)-sin2πx-2的零点的个数,
即函数y=f(x)的图象(图中绿色曲线)和函数y=sin2πx+2的图象(图中红色曲线)的交点个数,
如图所示:
由于函数y=f(x)的图象(图中绿色曲线)和函数y=sin2πx+2的图象(图中红色曲线)的交点个数为3,
故选:C.

点评 本题主要考查方程根的存在性以及个数判断,体现了转化、数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=2,AB=4,PA⊥平面ABCD,PA=2.
(1)求证:BC⊥平面PAC;
(2)若M是PC的中点,求点C到平面MAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2$\sqrt{2}cosxcos(x+\frac{π}{4})$.
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)已知tanα=$\frac{1}{2}$,求f(-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={y|y=-x2+2,x∈R},B={y|y=-x+2,x∈R},则A∩B=(  )
A.(-∞,2]B.{(0,2),(1,1)}C.{1,2}D.(0,2),(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={y|y=-x2+1,x∈R},B={y|y=log2x},则A∩B=(  )
A.(-∞,1]B.RC.D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,按英文字母表A、B、C、D、E、F、G、H、…的顺序有规律排列而成的鱼状图案中,字母“O”出现的个数为(  )
A.27B.29C.31D.33

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.我市“水稻良种研究所”对某水稻良种的发芽率与昼夜温差之间的关系进行研究.他们分别记录了3月21日至3月25日的昼夜温差及每天30颗水稻种子的发芽数,并得到如表资料
日期3月21日3月22日3月23日3月24日3月25日
温差x(℃)101113129
发芽数y(颗)1516171413
(1)请根据以上资料,求出y关于x的线性回归方程;据气象预报3月26日的昼夜温差为14℃,请你预测3月26日浸泡的30颗水稻种子的发芽数(结果保留整数).
(2)从3月21日至3月25日中任选2天,记种子发芽数超过15颗的天数为X,求X的概率分布列,并求其数学期望EX和方差DX.
(参考公式及参考数据b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i}^{n}{{x}_{i}}^{2}-n\stackrel{-2}{x}}$,a=$\overline{y}$-b$\overrightarrow{x}$,$\sum_{i}^{n}$xiyi=832,$\sum_{i}^{n}$xi2=615)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a,b∈R,则“a≥1且b≥1”是“a+b≥2”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求f(x)=ax2-(2a+1)x+lnx的单调区间.

查看答案和解析>>

同步练习册答案