精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=alnx+(x-c)|x-c|,a<0,c>0
(Ⅰ)当$a=-\frac{3}{4},c=\frac{1}{4}$时,求函数f(x)的单调区间;
(Ⅱ)设函数f(x)的图象在点P(x1,f(x1)),Q(x2,f(x2))两处的切线分别为l1,l2.若${x_1}=\sqrt{-\frac{a}{2}},{x_2}=c$,且l1⊥l2,求实数c的最小值.

分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(Ⅱ)根据垂直关系求出a的范围,令$\sqrt{-8a}=t$,则$a=-\frac{t^2}{8},t>2$,表示出c,根据函数的单调性求出c的最小值即可.

解答 解:函数$f(x)=\left\{\begin{array}{l}alnx+{(x-c)^2},x≥c\\ alnx-{(x-c)^2},0<x<c\end{array}\right.$,求导数$f'(x)=\left\{\begin{array}{l}\frac{{2{x^2}-2cx+a}}{x},x≥c\\ \frac{{-2{x^2}+2cx+a}}{x},0<x<c\end{array}\right.$,
(Ⅰ)当$a=-\frac{3}{4},c=\frac{1}{4}$时,$f'(x)=\left\{\begin{array}{l}\frac{{8{x^2}-2x-3}}{4x},x≥\frac{1}{4}\\ \frac{{-8{x^2}+2x-3}}{4x},0<x<\frac{1}{4}\end{array}\right.$,
若$0<x<\frac{1}{4}$,则$f'(x)=\frac{{-8{x^2}+2x-3}}{4x}<0$恒成立,
所以f(x)在$(0,\frac{1}{4})$上单调递减;若$x≥\frac{1}{4}$,则$f'(x)=\frac{(2x+1)(4x-3)}{4x}$,
令f'(x)=0,解得$x=\frac{3}{4}$或$x=-\frac{1}{2}$(舍),
当$\frac{1}{4}≤x<\frac{3}{4}$时,f'(x)<0,f(x)在$[\frac{1}{4},\frac{3}{4})$上单调递减;
当$x>\frac{3}{4}$时,f'(x)>0,f(x)在$(\frac{3}{4},+∞)$上单调递增.
所以函数f(x)的单调递减区间是$(0,\frac{3}{4})$,单调递增区间是$(\frac{3}{4},+∞)$…(5分)
(Ⅱ)由l1⊥l2知,$f'(\sqrt{-\frac{a}{2}})f'(c)=-1$,而$f'(c)=\frac{a}{c}$,则$f'(\sqrt{-\frac{a}{2}})=-\frac{c}{a}$,
若$\sqrt{-\frac{a}{2}}≥c$,则$f'(\sqrt{-\frac{a}{2}})=\frac{{2(-\frac{a}{2})-2c\sqrt{-\frac{a}{2}}+a}}{{\sqrt{-\frac{a}{2}}}}=-2c$
 所以$-2c=-\frac{c}{a}$,解得$a=\frac{1}{2}$,不符合题意…(7分)
故$\sqrt{-\frac{a}{2}}<c$,则$f'(\sqrt{-\frac{a}{2}})=\frac{{-2(-\frac{a}{2})+2c\sqrt{-\frac{a}{2}}+a}}{{\sqrt{-\frac{a}{2}}}}=-\sqrt{-8a}+2c=-\frac{c}{a}$
整理得$c=\frac{{a\sqrt{-8a}}}{2a+1}$,由c>0,a<0得$a<-\frac{1}{2}$…(10分)
令$\sqrt{-8a}=t$,则$a=-\frac{t^2}{8},t>2$,所以$c=\frac{{-\frac{t^2}{8}•t}}{{-\frac{t^2}{4}+1}}=\frac{t^3}{{2{t^2}-8}}$
设$g(t)=\frac{t^3}{{2{t^2}-8}},t>2$,当$2<t<2\sqrt{3}$时,g'(t)<0,g(t)在$(2,2\sqrt{3})$上单调递减;
当$t>2\sqrt{3}$时,g'(t)>0,g(t)在$(2\sqrt{3},+∞)$上单调递增
所以函数g(t)的最小值为$g(2\sqrt{3})=\frac{{3\sqrt{3}}}{2}$,故实数c的最小值为$\frac{{3\sqrt{3}}}{2}$…(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,PD=DC=a,E是PC的中点.
(1)求四棱锥P-ABCD的体积;
(2)求直线PB与平面ABCD所成角的正切值;
(3)证明:PA∥平面EDB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=ex-x在x=0处的切线的斜率为(  )
A.0B.1C.2D.e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=|x-a|,不等式f(x)≤2的解集是{x|1≤x≤5}.
(1)求实数a的值;
(2)若f(2x)+f(x+2)≥m对一切x∈R恒成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若椭圆$\frac{{x}^{2}}{6}$$+\frac{{y}^{2}}{4}$=1的两个焦点为F1,F2,P是椭圆上一点,若PF1⊥PF2,则△PF1F2的面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某高三毕业班的六个科任老师站一排合影留念,其中仅有的两名女老师要求相邻站在一起,而男老师甲不能站在两端,则不同的安排方法的种数是(  )
A.72B.144C.108D.192

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知全集U=R,集合M={x|(x-1)(x+2)≥0},N={x|-1≤x≤2},则(∁M)∩N=(  )
A.[-2,-1]B.[-1,2]C.[-1,1)D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设等差数列{an}的前n项和为Sn,若S6>S7>S5,则满足Sn>0的n的最大值为(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.集合A={1,2},B={3,4,5},从A,B中各取一个数,则这两数之和等于5的概率是(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案