精英家教网 > 高中数学 > 题目详情
y=cosx•sinx是(  )
A、奇函数
B、偶函数
C、既是奇函数也是偶函数
D、既不是奇函数也不是偶函数
考点:二倍角的正弦
专题:三角函数的图像与性质
分析:利用二倍角公式对函数解析式化简,利用函数奇偶性的定义判断即可.
解答: 解:y=cosx•sinx=
1
2
sin2x,
f(-x)=
1
2
sin(-2x)=-
1
2
sin2x=-f(x),
故函数为奇函数.
故选A.
点评:本题主要考查了三角函数图象与性质,函数的奇偶性.考查了学生分析和推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对“a、b、c至少有一个是正数”的反设是(  )
A、a、b、c至少有一个是负数
B、a、b、c至少有一个是非正数
C、a、b、c都是非正数
D、a、b、c都是正数

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,满足f(x-y)=
f(x)
f(y)
的单调递减函数是(  )
A、f(x)=x3
B、f(x)=x 
1
2
C、f(x)=(
1
2
x
D、f(x)=3x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
AC
AD
AB
在正方形网格中的位置如图所示,若
AC
AB
AD
,则λ+μ=(  )
A、2B、-2C、3D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中特称命题的个数是(  )
(1)有些三角形是等腰三角形              
(2)?x∈Z,x2-2x-3=0
(3)存在一个三角形,它的内角和是170°   
(4)矩形都是平行四边形.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC中,AE:EB=1:3,BD:DC=2:1,AD与CE相交于点F,则
EF
FC
+
AF
FD
的值为(  )
A、
1
2
B、1
C、
3
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

己知函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG是边长为2的等边三角形,则f(-1)的值为(  )
A、-
3
2
B、-
6
2
C、
3
D、-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是半圆O的直径,C是半圆O上除A、B外的一个动点,DC⊥平面ABC,DC∥BE,CD=BE,AB=4,tan∠EAB=
1
4

(1)证明:平面ADE⊥平面ACD;
(2)试探究当C在什么位置时三棱锥C-ADE的体积取得最大值,请说明理由并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
x
+2lnx-1,a∈R.
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在区间(0,e]上的最小值.

查看答案和解析>>

同步练习册答案