【题目】某地在每周六的晚上8点到10点半举行灯光展,灯光展涉及到10000盏灯,每盏灯在某一时刻亮灯的概率均为,并且是否亮灯彼此相互独立.现统计了其中100盏灯在一场灯光展中亮灯的时长(单位:),得到下面的频数表:
亮灯时长/ | |||||
频数 | 10 | 20 | 40 | 20 | 10 |
以样本中100盏灯的平均亮灯时长作为一盏灯的亮灯时长.
(1)试估计的值;
(2)设表示这10000盏灯在某一时刻亮灯的数目.
①求的数学期望和方差;
②若随机变量满足,则认为.假设当时,灯光展处于最佳灯光亮度.试由此估计,在一场灯光展中,处于最佳灯光亮度的时长(结果保留为整数).
附:
①某盏灯在某一时刻亮灯的概率等于亮灯时长与灯光展总时长的商;
②若,则,,.
科目:高中数学 来源: 题型:
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:
(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50 kg | 箱产量≥50 kg | |
旧养殖法 | ||
新养殖法 |
(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.
附:
P() | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(1,)是离心率为的椭圆C:(a>b>0)上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合
(1)求椭圆C的方程;
(2)求证:直线AB,AD的斜率之和为定值
(3)△ABD面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若曲线在处的切线恰与曲线相切,求a的值;
(2)不等式对一切正实数x恒成立,求a的取值范围;
(3)已知,若函数在上有且只有一个零点,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是边长为6的正方形,已知,且并与对角线交于,现以为折痕将正方形折起,且重合,记重合后为,记重合后为.
(1)求证:平面平面;
(2)求平面与平面所成二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《孙子算经》是中国古代重要的数学著作,书中有一问题:“今有方物一束,外周一匝有三十二枚,问积几何?”,该著作中提出了一种解决此问题的方法:“重置二位,左位减八,余加右位,至尽虚减一,即得.”通过对该题的研究发现,若一束方物外周一匝的枚数是8的整数倍时,均可采用此方法求解,如图是解决这类问题的程序框图,若输入,则输出的结果为( )
A.80B.47C.79D.48
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过定点,且与定直线相切.
(1)求动圆圆心的轨迹的方程;
(2)过点的任一条直线与轨迹交于不同的两点,试探究在轴上是否存在定点(异于点),使得?若存在,求点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近一段时间来,由于受非洲猪瘟的影响,各地猪肉价格普遍上涨,生猪供不应求.各大养猪场正面临巨大挑战.目前各项针对性政策措施对于生猪整体产量恢复、激发养殖户积极性的作用正在逐步显现.现有甲、乙两个规模一致的大型养猪场,均养有1万头猪,将其中重量(kg)在内的猪分为三个成长阶段如下表.
猪生长的三个阶段
阶段 | 幼年期 | 成长期 | 成年期 |
重量(Kg) |
根据以往经验,两个养猪场猪的体重X均近似服从正态分布.由于我国有关部门加强对大型养猪场即将投放市场的成年期猪的监控力度,高度重视成年期猪的质量保证,为了养出健康的成年活猪,甲、乙两养猪场引入两种不同的防控及养殖模式.已知甲、乙两个养猪场内一头成年期猪能通过质检合格的概率分别为,.
(1)试估算甲养猪场三个阶段猪的数量;
(2)已知甲养猪场出售一头成年期的猪,若为健康合格的猪,则可盈利600元,若为不合格的猪,则亏损100元;乙养猪场出售一头成年期的猪,若为健康合格的猪,则可盈利500元,若为不合格的猪,则亏损200元.
(ⅰ)记Y为甲、乙养猪场各出售一头成年期猪所得的总利润,求随机变量Y的分布列;
(ⅱ)假设两养猪场均能把成年期猪售完,求两养猪场的总利润期望值.
(参考数据:若,,,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为( )
A.0.35B.0.25C.0.20D.0.15
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com